
会员
深度学习必学的十个问题:理论与实践
更新时间:2022-07-28 19:53:17 最新章节:参考文献
书籍简介
本书兼顾了数学上的理解和代码实践,内容主要包括基础知识和深度学习模型。第1章介绍深度学习的简洁发展思路和表示学习机制;第2章、第3章介绍神经网络的基于梯度的优化方法、神经网络的优化难点以及相应的解决方法;第4章讨论神经网络遇到的过拟合问题;第5章分析神经网络的最小组成部分:神经元;第6章讨论三种方案解决深层网络的训练难题:批标准化、SELU、ResNet;第7章、第8章讲述了两种重要的神经网络模型:卷积神经网络和循环神经网络;第9章讨论了对于神经网络的无监督学习方式;第10章详细讨论以变分自编码器和对抗生成网络为代表的概率生成网络。本书适合对于深度学习感兴趣的大学生、工程师阅读参考。阅读本书需要具备基础的Python编程技术和基本的数学知识。
品牌:清华大学
上架时间:2021-06-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
李轩涯 张暐
- 会员统计学习是机器学习的重要分支,本书兼顾了数学上的理论和代码实践,内容主要包括基础知识和统计学习模型。第1章、第2章结合VC维介绍过拟合的本质,并介绍手动特征选择的办法;第3章、第4章从最简单的线性模型出发经过概率统计的解读而得到分类和回归算法;第5章讨论不依赖于假设分布的非参数模型;第6章介绍将核方法作为一种非线性拓展的技巧,介绍如何将该方法应用到很多算法中,并引出了著名的高斯过程;第7章以混合高人工智能6.7万字
同类热门书
最新上架
- 会员DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合计算机17.1万字
- 会员本书共分为8章,分别讲解了常见的人工智能以及人工智能影响下的广告流量变现、商业合作变现、直播变现、私域变现和IP变现等。此外,还对未来的人工智能与新媒体变现做了趋势分析。计算机10.5万字
- 会员本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字
- 会员本书通过13章的探讨,带领读者踏上项目管理卓越之路。第1章“人工智能颠覆与重塑项目管理”,首先揭示了人工智能对项目管理的深刻影响和带来的机遇与挑战。紧接着,第2章至第13章依次介绍了使用ChatGPT编写各种文档、在项目启动中的应用、帮助组建高效团队、辅助项目沟通管理、项目计划与管理、项目成本管理、项目时间管理、项目质量管理、项目风险管理、辅助采购计划与采购流程、辅助项目绩效管理以及进行项目总结等计算机16.6万字
- 会员本书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。全书通过共计13章的系统内容,探讨AI技术在架构设计中的应用,以及AI对传统架构师工作方式的影响,读者可以了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。计算机7字
- 会员这是一本全方位讲解如何利用AI工具为HR赋能的著作,是AI时代HR提升职场竞争力的实战指南。作者基于深厚的HR管理经验和AI实战经验,通过科学的方法、高效的提示词、丰富的案例、清晰的步骤,细致地讲解了如何利用AI工具提高工作效率、优化管理流程、提升人才管理水平。从AIGC的基础知识到AI工具的使用,从AI在人力资源全生命周期所有场景中的应用到使用AI的风险防控,本书全面系统地讲解了HR需要掌握的全计算机20.6万字
同类书籍最近更新
- 会员本书从一个完全不了解机器学习的程序员的视角出发,通过一系列生动有趣的具体应用实例,运用诙谐的语言以循序渐进的方式比较系统地介绍机器学习的本质思想、基本理论和重要算法,比较细致地剖析线性模型、感知机模型、浅层神经网络、深度神经网络的设计原理与编程方法,引导读者亲自动手从零开始打造和完善机器学习的底层代码,逐步消除对机器学习算法原理的认知盲点,让广大初学者能够较为轻松地掌握机器学习和深度学习的基本理论人工智能15.6万字
- 会员机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9人工智能12.3万字