第3章 走出远古的新材料(3)
- 科普知识百科全书:材料知识篇
- 王月霞主编
- 3013字
- 2015-04-21 09:35:58
我们罗嗦了这么多,归纳起来,就是一句话:在军事国防上,在工业战线上,在日常生活中,人们迫切需要有一种能自动调光的护目镜。这种护目镜在遇到强光时能自动迅速变暗,当危险光消失后,又能恢复到原来的明亮状态。
现在,有了透光陶瓷,人们便可梦想成真了:有一种透光陶瓷能透光、耐高温、耐腐蚀、强度高。讲得形象一点,在陶瓷护目镜的镜片中,有一套自动化关闭、开启系统。有了这种新颖护目镜,电焊工人在操作时,就不必一手拿着面罩,一手拿着焊枪——进行电焊时,把面罩戴上;电焊一结束,再拿下面罩。有了这种护目镜,核试验工作人员就可以戴着它进行核爆炸前的各项准备工作了。
墨镜家族中的这位新成员,为需要在强光下工作的人们带来了福音。
陶瓷轴承
轴承可分为三种:滚动轴承、滑动轴承和电磁轴承。
滚动轴承是一种高度标准化的机械零件,有着多种尺寸规格和精度等级的系列型号,可以在相当大的范围内满足各种机械对轴承的要求。由于滚动轴承的维护十分简便,因此得到了非常广泛的应用。
滚动轴承结构的最大特征是,在有相对运动的两个套圈之间放置有滚动体,因此,滚动轴承较之滑动轴承具有摩擦系数小、消耗功率少、效率高的优点。
讲得通俗一点,滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成,过去通常用合金钢制造。20世纪90年代中期,陶瓷滚动轴承已经问世。经试用表明,陶瓷滚动轴承具有以下优点:
第一,由于陶瓷几乎不怕腐蚀,所以,陶瓷滚动轴承适宜于在布满腐蚀性介质的恶劣条件下作业。
第二,由于陶瓷滚动小球的密度比钢低,重量更要轻得多,因此转动时对外圈的离心作用可降低40%,进而使用寿命大大延长。
第三,陶瓷受热胀冷缩的影响比钢小,因而在轴承的间隙一定时,可允许轴承在温差变化较为剧烈的环境中工作。
第四,由于陶瓷的弹性模量比钢高,受力时不易变形,因此有利于提高工作速度,并达到较高的精度。
国外已开发成功了在高温条件下采用固体润滑剂的陶瓷滚动轴承,也有利用液体或油脂润滑的特种钢与陶瓷组合而成的滚动轴承或全陶瓷滚动轴承。
至于谈到陶瓷滚动轴承的制造材料,主要采用氮化硅陶瓷。据有关资料报道,现代陶瓷中崛起的两颗新星——氮化硅和碳化硅都具有惊人的耐高温性能。氮化硅陶瓷在1400摄氏度,碳化硅陶瓷在1700摄氏度时,强度仍高达每平方厘米7000千克,而大多数金属这时早已软化或熔化成液体了。
陶瓷的特异功能
到了现代社会,陶瓷已经得到更大的发展,并在工业和科学技术中有着极为广泛的用途。这些陶瓷称为先进陶瓷或精细陶瓷。它们代表陶瓷发展的第二个阶段。也就是说,先进陶瓷的主要成分和传统陶瓷的主要成分是硅酸盐化合物不同,是指用氧化物、碳化物、氮化物、硼化物、硅化物、硫化物和其他无机非金属材料制作的陶瓷。
先进陶瓷有许多“特异功能”,比如有的具有良好的绝缘性,有的则具有半导体性能,有些还能导电,有些甚至在一定温度下具有超导性,即完全没有电阻。有些陶瓷有一种奇特的性能,在它上面加上压力,它就能产生电压,称为压电陶瓷。
还有一些陶瓷对电、磁、光线、声音、温度冷热、潮湿等外界条件的变化很敏感,称为敏感陶瓷,可用来制造各种传感器元件。先进陶瓷还具有一般陶瓷通常具有的耐热、耐磨、高硬度、抗氧化等性能。先进陶瓷的成分也和用天然无机化合物(如硅酸盐化合物,陶土、瓷土等)烧结出的传统陶瓷有很大不同。而是以精制的高纯度人工合成的无机化合物(如各种氧化物、碳化物、氮化物、硼化物、硅化物或其他无机非金属)为原料,采用精密控制的工艺方法烧结出来的。
不会破损的陶瓷锤子
陶瓷在人类发展史上作出了巨大的贡献。不过,它给人的印象总是很脆的。比如,一只瓷碗掉在地上,就会“粉身碎骨”。那么,用陶瓷去做锤子,不怕它“以卵击石”吗?
原来,科学家们在对陶瓷进行研究后发现,陶瓷里面往往存在着一些细微裂纹,当它受到诸如撞击、敲打等外力作用时,这些细微裂纹便会不断扩展,汇集起来,变成粗大的裂纹,以致最后“粉身碎骨”。如果不让陶瓷中的细微裂纹扩展开来,就可以制成一种打不碎的陶瓷了。有人把这种新产品称为韧性陶瓷,也有人称它为陶瓷钢。
陶瓷锤子不会破损的奥秘在于:在氧化锆陶瓷的原料中,人们又添加了少量的氧化钇、氧化镁、氧化钙等粉末。经高温烧制成氧化锆陶瓷后,其中的氧化锆变成了两种晶体,它们分别叫立方晶体和四方晶体。当它在外力作用下,四方晶体就会变成一种单斜晶体,体积迅速增大。由于晶体体积的增大,从而阻止了陶瓷中原先存在的细微裂纹的扩展。这样,陶瓷锤子就不会破裂了。
陶瓷钢除了具有不脆的优点外,还具有强度大、硬度高和不怕腐蚀等性能。因此,它除了可以制成陶瓷锤子以外,还可以制成菜刀、剪刀、螺丝刀、锯子、斧头等用具。
体积小效率高的陶瓷发动机
用陶瓷制造发动机是当代材料科学中的一个热门话题。不久前,美国将陶瓷发动机安装到坦克上,做了如下试验:在演习场200米的起跑线上,停放着两辆坦克,一辆是装有500马力的钢质柴油发动机,另一辆是装有同等马力的陶瓷发动机。有趣的是,钢质发动机坦克在充分预热运转后,经过26秒钟到达终点,而陶瓷发动机坦克只用了19秒钟。显而易见,陶瓷发动机坦克不仅比钢质发动机坦克快了7秒钟,而且无须预热运转。
到目前为止,世界上已有中国、美国和日本将陶瓷发动机装到大客车上,进行了长距离实车试验。由于陶瓷能耐很高的温度,用它制造的发动机可以不要冷却供水系统,因而使发动机的体积大大缩小,重量大大减轻。陶瓷发动机最突出的优点是,发动机的热效率可达到50%左右,用同样多的燃料,可使汽车多跑30%的路程。所以,陶瓷发动机被称为节能型发动机。
采用工程陶瓷的燃气轮机
首先,让我们来了解一下,什么是工程陶瓷?
随着现代科学技术的飞速发展,出现了特种陶瓷,并广泛应用于生活和生产中,如手表外壳、人工骨、高速切削刀具、汽车部件等。特种陶瓷按用途分,利用它电气特性的称为电陶瓷,而利用机械特性的就称为工程陶瓷。
燃气轮机为什么要采用工程陶瓷?
燃气轮机是一种先进的动力机械,它的核心部件是由静叶片和转子组成的涡轮。运行时,从燃烧室出来的高温高压燃气通过静叶片高速喷到转子叶片上,使转子高速旋转而产生动力。
燃气温度越高,产生的动力越大,效率就越高,燃料也越省。可是,目前利用超高温合金制成的涡轮,即使加上复杂昂贵的冷却技术,最高使用温度极限也不得超过1150℃,从而限制了燃气轮机效率的提高。而现代工程陶瓷中崛起的两颗新星——氮化硅陶瓷和碳化硅陶瓷却具有惊人的耐高温性能。氮化硅陶瓷在1400℃,碳化硅陶瓷在1700℃时,强度都高达70兆帕。用它们制作涡轮叶片,可把燃气温度提高到1370℃以上,使燃气轮机的效率大幅度提高。
因此,工程陶瓷成了制造燃气轮机的最佳选择。
永不褪色的陶瓷照片
1991年,日本富士胶卷公司与一家窑业公司合作,开发成功了世界上第一张陶瓷照片。
这种陶瓷照片是使用硬度仅次于金刚石的陶瓷作为基色,用无机质的釉药在它表面形成照片图像,然后在高温下上彩。
由于陶瓷照片使用无机质的色素在高温下烧成,所以,无论在太阳光曝和烈焰的高热下,或者置于海水之中,都不会褪色,而且不易受损。研究人员在使用日光照射试验机的测试中发现,即使经历1200小时也未发生任何变化,就是在一些有机溶剂中也不会变化。
据有关专家称,陶瓷照片的用途很广,纪念照片、纪念碑、道路标志等等方面它均可发挥独特的效用,还可用于房屋尤其是易沾水房间墙壁装饰的特色陶瓷砖等方面。