- 现代控制理论(第2版)
- 王宏华主编
- 1833字
- 2025-02-17 23:40:59
2.5 线性时变系统状态方程的解
线性时变系统的结构参数随时间而变化,其一般形式的状态方程为时变非齐次状态方程,即

式中,A(t)、B(t)分别为n×n、n×r维时变实值矩阵。若输入控制u=0,式(2-47)则变为时变齐次状态方程,即

若矩阵A仅为一阶,即A(t)=a(t),则向量-矩阵时变齐次状态方程式(2-48)变为式(2-49)所示的标量时变齐次微分方程,即

可应用分离变量法求解式(2-49),即

式(2-50)表明,x(t)也可视为初值x(t0)的转移,但时变系统与定常系统转移特性不同之处在于,其不仅与系统特性a(t)及t有关,而且与初始时刻t0有关,但与t和t0之差无关,即对于标量时变系统,其状态转移函数为

则标量时变齐次微分方程式(2-49)的解可表示为

仿照标量时变齐次微分方程解的表达式(2-52),时变齐次状态方程式(2-48)的解为

式中,Φ(t,t0)为式(2-48)所描述时变系统状态转移矩阵。将式(2-53)代入式(2-48)得

由式(2-53)及式(2-54)可推知状态转移矩阵Φ(t,t0)满足如下矩阵微分方程和初始条件

应用经典控制理论分析时变系统较为困难,而采用状态空间分析法的优点之一在于可将线性定常系统的求解方法推广到线性时变系统,且应用状态转移矩阵的概念和性质,可使时变系统的解在形式上与定常系统统一,即自由运动均可视为初始状态的转移。应该指出,时变系统状态转移矩阵用Φ(t,t0)表示,反映其为t和t0的函数;但定常系统状态转移矩阵用Φ(t-t0)表示,反映其为t-t0的函数。
2.5.1 线性时变系统状态转移矩阵的求解
由式(2-11)可知,线性定常系统状态转移矩阵可用矩阵指数表示,即

但时变系统状态转移矩阵一般不能用矩阵指数给出,只有当A(t)与

满足矩阵相乘可交换条件,即成立时,Φ(t,t0)才可用如下矩阵指数及其幂级数展开式表示,即

式(2-56)两边对t求导数,得

若

则由式(2-57)有

以上推导证明,若A(t)与

满足矩阵相乘可交换条件式(2-58),状态转移矩阵Φ(t,t0)可用式(2-56)所示的矩阵指数表示,此时可得式(2-48)闭合形式的解为

下面进一步分析A(t)与

满足矩阵相乘可交换条件对时变系统状态矩阵A(t)的要求。由式()得

即

显然,若对任意的t1、t2,下式

成立,则A(t)与

满足矩阵相乘可交换条件。
应该指出,时变系统的系统矩阵A(t)一般并不满足式(2-62),这时Φ(t,t0)就不能采用简便方法求解,通常也得不到闭合形式的Φ(t,t0),但可表示成递推形式,采用数值计算近似求解。由式(2-55)得
dΦ(t,t0)=A(t)Φ(t,t0)dt
从t0到t对上式两边取积分,得

反复应用式(2-63),可将Φ(t,t0)展成无穷级数,即

式(2-64)所示级数称为Peano-Baker级数,若A(t)的元素在积分区间有界,则该级数收敛,但难以表示成封闭形式的解析式,可根据精度要求采用数值计算方法近似求解。
2.5.2 线性时变系统状态转移矩阵的性质
1.传递性

证明 由时变齐次状态方程解的表达式(2-53),有

故有
Φ(t2,t0)=Φ(t2,t1)Φ(t1,t0)
2.可逆性

证明 由式(2-65)及式(2-55),则有
Φ(t0,t)Φ(t,t0)=Φ(t0,t0)=I,Φ(t,t0)Φ(t0,t)=Φ(t,t)=I
故有
Φ-1(t,t0)=Φ(t0,t)
2.5.3 线性时变非齐次状态方程的解
设线性时变非齐次状态方程式(2-47)的解为

将式(2-67)代入式(2-47),并根据式(2-55)得

则有

故

上式中的ξ(t0)可据式(2-67)、式(2-55)求得,即
ξ(t0)=Φ-1(t0,t0)x(t0)=x(t0)
则线性时变非齐次状态方程式(2-47)的解为

式(2-68)表明,由于线性系统满足叠加原理,线性时变系统状态的全响应x(t)由源于系统初始状态x(t0)的零输入响应Φ(t,t0)x(t0)和源于系统输入u(t)控制作用的零状态响应两部分构成。应该指出,由于通常得不到闭合形式的Φ(t,t0),故式(2-68)右边一般得不到闭合形式,需在数字计算机上根据精度要求采用数值计算方法近似计算。
【例2-7】 已知线性时变齐次状态方程为,求当t0=1

时状态方程的解。
解

即A(t)与

满足矩阵相乘可交换条件,系统状态转移矩阵Φ(t,t0)可由式(2-56)所示的。

则


【例2-8】 求线性时变系统,t0=0的状态转移矩阵Φ(t,0)。
解


可见,A(t1)A(t2)≠A(t2)A(t1),A(t)与

不可交换,应采用式(2-64)所示Peano-Baker级数表示Φ(t,t0),即

【例2-9】 已知线性时变系统状态空间表达式为

试求初始时刻t0=0,初始状态x(t0)=

时,输入为单位阶跃信号u(t)=1(t)系统的输出响应。
解

可见,A(t1)A(t2)=A(t2)A(t1),即A(t)与

可交换,则可由式(2-56)的矩阵指数求系统状态转移矩阵Φ(t,t0),即

由以上计算可以看出,若t0≠0,则


则系统的输出响应为
