第11章 COPERNICUS(2)

The first of the great discoveries which Copernicus made relates to the rotation of the earth on its axis. That general diurnal movement, by which the stars and all other celestial bodies appear to be carried completely round the heavens once every twenty-four hours, had been accounted for by Ptolemy on the supposition that the apparent movements were the real movements. As we have already seen, Ptolemy himself felt the extraordinary difficulty involved in the supposition that so stupendous a fabric as the celestial sphere should spin in the way supposed. Such movements required that many of the stars should travel with almost inconceivable velocity.

Copernicus also saw that the daily rising and setting of the heavenly bodies could be accounted for either by the supposition that the celestial sphere moved round and that the earth remained at rest, or by the supposition that the celestial sphere was at rest while the earth turned round in the opposite direction. He weighed the arguments on both sides as Ptolemy had done, and, as the result of his deliberations, Copernicus came to an opposite conclusion from Ptolemy. To Copernicus it appeared that the difficulties attending the supposition that the celestial sphere revolved, were vastly greater than those which appeared so weighty to Ptolemy as to force him to deny the earth's rotation.

Copernicus shows clearly how the observed phenomena could be accounted for just as completely by a rotation of the earth as by a rotation of the heavens. He alludes to the fact that, to those on board a vessel which is moving through smooth water, the vessel itself appears to be at rest, while the objects on shore seem to be moving past. If, therefore, the earth were rotating uniformly, we dwellers upon the earth, oblivious of our own movement, would wrongly attribute to the stars the displacement which was actually the consequence of our own motion.

Copernicus saw the futility of the arguments by which Ptolemy had endeavoured to demonstrate that a revolution of the earth was impossible. It was plain to him that there was nothing whatever to warrant refusal to believe in the rotation of the earth. In his clear-sightedness on this matter we have specially to admire the sagacity of Copernicus as a natural philosopher. It had been urged that, if the earth moved round, its motion would not be imparted to the air, and that therefore the earth would be uninhabitable by the terrific winds which would be the result of our being carried through the air. Copernicus convinced himself that this deduction was preposterous. He proved that the air must accompany the earth, just as his coat remains round him, notwithstanding the fact that he is walking down the street. In this way he was able to show that all a priori objections to the earth's movements were absurd, and therefore he was able to compare together the plausibilities of the two rival schemes for explaining the diurnal movement.

[PLATE: FRAUENBURG, FROM AN OLD PRINT.]

Once the issue had been placed in this form, the result could not be long in doubt. Here is the question: Which is it more likely-- that the earth, like a grain of sand at the centre of a mighty globe, should turn round once in twenty-four hours, or that the whole of that vast globe should complete a rotation in the opposite direction in the same time? Obviously, the former is far the more simple supposition. But the case is really much stronger than this. Ptolemy had supposed that all the stars were attached to the surface of a sphere. He had no ground whatever for this supposition, except that otherwise it would have been well-nigh impossible to have devised a scheme by which the rotation of the heavens around a fixed earth could have been arranged. Copernicus, however, with the just instinct of a philosopher, considered that the celestial sphere, however convenient from a geometrical point of view, as a means of representing apparent phenomena, could not actually have a material existence. In the first place, the existence of a material celestial sphere would require that all the myriad stars should be at exactly the same distances from the earth. Of course, no one will say that this or any other arbitrary disposition of the stars is actually impossible, but as there was no conceivable physical reason why the distances of all the stars from the earth should be identical, it seemed in the very highest degree improbable that the stars should be so placed.