4.关系提取的方法

关系的提取有很多方法,并且学术界也一直在研究,但是当你遇到特定问题的时候,我们不得不针对问题重新思考。

首先第一想到的就是基于监督的方法,不过你需要不少的人工的工作量在里面,人工告诉机器什么样的东西才是你所需要提取的关系,这个也是教机器很多次,希望它在后续的过程当中能够猜出来你希望的结果。它的优点就是针对领域,识别率比较高,我们在做的时候也用到了这种方法。缺点也很明显,如果更换了应用领域,原来的模型就不太适用了。

但是我们知道在这个过程中,人也是会累的,人是会犯错的,每个人的知识、背景都不一样,没有办法高精度确的教会机器。

下面介绍一种更好的方法,就是半监督的方法。

半监督的方法,思想非常好,比如说先说张三是张仨的儿子,在这句话中蕴含了一个模式,就是xx是yy的儿子,简而言之就是“父子关系”的模式,我可以把这个模式推广放到更广阔的范围,可以在互联网里面查找“xx是yy的儿子”这样的形式,这个过程当中,除了初始化的种子里面提到这种模式之外,还可以通过新发现的关系来查找到更多的模式。再把更多模式里面学到的东西,不断地滚雪球,能够得到更多的关系。但是做这个事情最最重要的前提问题域本身是有这么多的各种各样丰富的模式,不止是单一的模式,如果只有单一的模式,你希望从单一的模式扩展到所有的模式都是不可能的。

接下来是高阶关系,这个是我从别人论文取得里面的截图,举例说明高阶关系。高阶关系其实我们遇到的不是很多,高阶关系处理的还是比较复杂的,不能依赖于单一的简单的解决方法,论文中提到的方法并不实用,现在高阶也会规则引擎去做识别。

这里举了一个使用规则提取关系的例子,这个规则看着非常复杂的东西,其实说明的是亲属关系,提到两个人,再加上两个人之间的关键词,我们这个规则可以识别出来这种模式。

假设我们前面这些问题都已经解决了,我们已经利用文本中原有的信息解决了上述问题,但是把文本里面的信息挖掘的非常充分后,会发现涉及到很多人的重名。你需要确认两个事件人都是同一个人,这件事情需要上下文,还需要外部的知识库辅助完成这个事情。一方面需人口库,甚至地图库,你甚至需要确认说提到的地点在地理上确实是相近的。