本书的主要内容

第1章主要讲解了在Ubuntu和Windows系统下,Python集成开发环境的搭建。考虑到初学者容易为安装第三方库犯难,又介绍了三种简单实用的方法来安装这些常见的库。接着对几个后面要用到的高级语法进行了简单介绍,为之后的应用打下基础。

第2章集中讲解了数据采集的流程,即网络爬虫程序的设计与实现。首先本章没有拘泥于使用Python的内置库urllib库进行实现,而是直接介绍了requests和其他更加简捷强大的库来完成程序的设计。在进阶内容中,对常见的编码问题、异常处理、代理IP、验证码、机器人协议、模拟登录,以及多线程等相关问题给出了解决的方案。

第3章讲解数据的清洗问题。在具体讲解清洗数据之前,先介绍了TXT、XLSX、JSON、CSV等各种文件的导入和导出的方法,并介绍了Python与MySQL数据库交互的方式。接着介绍了NumPy和pandas库的基本使用方法,这是我们用于数据处理和科学计算的两个强大的工具。最后综合以上的学习介绍了数据的去重、缺失值的填补等经典的数据清洗方法。

第4章首先讲解探索性数据分析的应用,并且简单介绍了机器学习基本知识。然后演示如何应用sklearn库提供的决策树和最邻近算法来处理分类问题,并尝试根据算法原理手动实现最邻近算法。最后介绍如何使用pandas、matplotlib和seaborn这三个库来实现数据的可视化。

第5章是综合性学习的章节,讲解了三个小项目的完整实现过程,旨在通过操作生活中真正的数据来强化前面基础内容的学习。