- MXNet深度学习实战
- 魏凯峰
- 1345字
- 2023-07-20 10:45:56
1.3.1 MXNet的发展历程
在MXNet诞生之前,已有一个深度学习框架cxxnet,该框架比较成熟,不仅可扩展性强,而且拥有统一的并行计算接口;另外还有一个接口Minerva,这是一个比较灵活的类似于NumPy的计算接口,当时还在CMU读博的李沐就和这两个项目的开发者一起将二者结合在一起,最终诞生了MXNet,MXNet这个名字也是前面两个项目名字的组合。
2015年9月,cxxnet正式迁移至MXNet,这也标志着MXNet正式开源。作为cxxnet的优化版本,MXNet在实现了cxxnet所有功能的基础上加入了更多新的功能,比如NDArray模块和Symbol模块,同时其速度更快,显存占用更少。另外MXNet提供了更加灵活且直观的接口,更加便于用户使用,详细内容可以参考MXNet官方文档。该文档中提供了详细的接口介绍和使用方法,文档地址:https://mxnet.incubator.apache.org/,同时MXnet官方开源了代码,感兴趣的读者可以访问:https://github.com/apache/incubator-mxnet了解。
2016年年底,Amazon宣布正式将MXNet作为官方使用的深度学习框架。当时的背景是TensorFlow已经开源了一年左右,普及速度非常快;Caffe作为深度学习框架的元老,积累了非常多的用户。这两种深度学习框架对处于快速发展中的MXNet施加了很大的压力,毕竟那段时间MXNet的开发者们的主要精力还放在开发上,框架推广上的力度还不够,因此此时加入Amazon这一事件给了MXNet很大的支持,进一步推动了MXNet后期的快速发展和推广。
2017年8月,MXNet发布了0.11版本,该版本最大的改进就是发布了动态图接口Gluon。采用命令式编程的Gluon接口使得网络结构的设计更加灵活,同时也更便于代码调试。Gluon和PyTorch拥有许多共同点,比如命令式编程的特点、主要的接口设计等,目前Gluon接口已经成为MXNet框架非常重要的一部分。为了方便读者交流学习,Gluon官方推出了技术论坛,该技术论坛目前非常活跃,感兴趣的读者可以访问Gluon官方论坛:https://discuss.gluon.ai/。
2018年5月,MXNet正式推出了专门为计算机视觉任务打造的深度学习工具库GluonCV,该工具库提供了包括图像分类、目标检测、图像分割等领域的前沿算法复现模型。GluonCV主要以Gluon接口为例进行实现,而且提供了详细的复现代码,从方便读者研究学习。目前GluonCV库的代码已经开源,代码地址:https://github.com/dmlc/gluon-cv,GluonCV库官方文档地址:https://gluon-cv.mxnet.io/。官方文档中还提供了预训练模型的下载链接、复现代码的下载链接、各种接口介绍和教学的例子,非常便于读者学习。
2018年10月,MXNet推出GluonCV 0.3.0版本,新版本不仅添加了图像分类、目标检测、图像分割等领域新的算法模型,而且对已有的复现模型也做了优化,使得算法模型在效果上有了进一步的提升。目前GluonCV还在快速发展中,内容也越来越丰富,强烈推荐读者使用和学习。
2018年11月,MXNet正式推出1.3.1版本,该版本提供了更加完善的接口,考虑到目前GluonCV库需要1.3.0以上版本的MXNet才能支持,因此本书代码将基于MXNet 1.3.1版本进行开发。
MXNet主打小巧和灵活,版本更新速度快而且兼容性好,接口方面基本上紧跟前沿的算法,能够及时实现前沿算法中的自定义操作,并整合到MXNet框架的接口中。比如目标检测(object detection)算法中比较优秀的SSD,其中关于default boxes的生成和检测层都有对应的实现,用户可以直接调用MXNet的指定接口。再比如图像分割领域的Mask RCNN算法中用到的ROIAlign层在MXNet也有对应的实现。这些都说明MXNet的开发者一直致力于开发和维护MXNet,基本上两、三个月的时间就会发布新版本,如此活跃的社区必将推动MXNet的快速发展。虽然MXNet发布新版本的节奏较快,但有一个好处在于每次发布的新版本对原有接口的改动非常小,主要是修改bug和增加新的接口,因此这不仅大大降低了代码维护的成本,还提供了更加丰富的接口选择。