- 石墨烯:从基础到应用
- 刘云圻等编著
- 2405字
- 2020-08-28 08:02:30
参考文献
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Geim A K. Random walk to graphene(Nobel lecture)[J]. Angew Chem Int Ed, 2011, 50(31): 6966-6985.
[3] Geim A K. Nobel lecture: random walk to graphene[J]. Rev Mod Phys, 2011, 83(3): 851-862.
[4] Wallace P R. The band theory of graphite[J]. Phys Rev, 1947, 71(9): 622-634.
[5] McClure J W. Diamagnetism of graphite[J]. Phys Rev, 1956, 104(3): 666-671.
[6] Semenoff G W. Condensed-matter simulation of a three-dimensional anomaly[J]. Phys Rev Lett, 1984, 53(26): 2449-2452.
[7] Boehm H P, Setton R, Stumpp E. Nomenclature and terminology of graphite intercalation compounds[J]. Carbon, 1986, 24(2): 241-245.
[8] Peierls R. E. Quelques propriétés typiques des corps solides[J]. Annales de l'institut Henri Poincaré, 1935, 5(3): 177-222.
[9] Landau L. D. Zur theorie der phasenumwandlungen ii[J]. Phys Z Sowjetunion, 1937, 11: 26-35.
[10] Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models[J]. Phys Rev Lett, 1966, 17(22): 1133-1136.
[11] Mermin N D. Crystalline order in two dimensions[J]. Phys Rev, 1968, 176(1): 250-254.
[12] Lu X, Huang H, Nemchuk N, et al. Patterning of highly oriented pyrolytic graphite by oxygen plasma etching[J]. Appl Phys Lett, 1999, 75(2): 193-195.
[13] Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology, 1999, 10(3): 269.
[14] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108(52): 19912-19916.
[15] Zhang Y, Small J P, Pontius W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices[J]. Appl Phys Lett, 2005, 86(7): 073104.
[16] Schafhaeutl C. Ueber die verbindungen des kohlenstoffes mit silicium, eisen und anderen metallen, welche die verschiedenen gallungen von roheisen, stahl und schmiedeeisen bilden[J]. Journal für Praktische Chemie, 1840, 21(1): 129-157.
[17] Schafhaeutl C. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron[J]. Philosophical Magazine Series 3, 1840, 16(103): 297-304.
[18] Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149, 249-259.
[19] Brodie B C. ⅩⅢ-researches on the atomic weight of graphite[J]. Quarterly Journal of the Chemical Society of London, 1860, 12(1): 261-268.
[20] Morgan A E, Somorjai G A. Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface[J]. Surf Sci, 1968, 12(3): 405-425.
[21] May J W. Platinum surface leed rings[J]. Surf Sci, 1969, 17(1): 267-270.
[22] Blakely J M, Kim J S, Potter H C. Segregation of carbon to the (100) surface of nickel[J]. J Appl Phys, 1970, 41(6): 2693-2697.
[23] Van Bommel A J, Crombeen J E, Van Tooren A. Leed and auger electron observations of the SiC (0001) surface[J]. Surf Sci, 1975, 48(2): 463-472.
[24] Boehm H P, Clauss A, Fischer G O, et al. Dünnste kohlenstoff-folien[J]. Zeitschrift für Naturforschung B, 1962, 17(3): 150.
[25] Dreyer D R, Ruoff R S, Bielawski C W. From conception to realization: an historial account of graphene and some perspectives for its future[J]. Angew Chem Int Ed, 2010, 49(49): 9336-9344.
[26] Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.
[27] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[28] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9-10): 351-355.
[29] Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene[J]. Nat Nanotech, 2008, 3(8): 491-495.
[30] Ponomarenko L A, Yang R, Mohiuddin T M, et al. Effect of a high-kappa environment on charge carrier mobility in graphene[J]. Phys Rev Lett, 2009, 102(20): 206603.
[31] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and berry’s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
[32] Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene[J]. Science, 2007, 315(5817): 1379.
[33] Xue Y, Wu B, Jiang L, et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition[J]. J Am Chem Soc, 2012, 134(27): 11060-11063.
[34] Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Lett, 2009, 9(5): 1752-1758.
[35] Wang X L, Zhang L, Yoon Y, et al. N-doing of graphene through electrothermal reactions with ammonia[J]. Science, 2009, 324(5938): 768-771.
[36] Ren Y, Cai W, Zhu Y, et al. Controlling the electrical transport properties of graphene by in situ metal deposition[J]. Appl Phys Lett, 2010, 97(5): 053107.
[37] Fujita M, Wakabayashi K, Nakada K, et al. Peculiar localized state at zigzag graphite edge[J]. J Phys Soc Jpn, 1996, 65(7): 1920-1923.
[38] Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: nanometer size effect and edge shape dependence[J]. Phys Rev B, 1996, 54(24): 17954-17961.
[39] Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons[J]. Nature, 2006, 444(7117): 347-349.
[40] Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett, 2006, 97(21): 216803.
[41] Han M Y, Ozyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev Lett, 2007, 98(20): 206805.
[42] Xu Z, Zheng Q S, Chen G. Elementary building blocks of graphene-nanoribbon-based electronic devices[J]. Appl Phys Lett, 2007, 90(22): 223115.
[43] Ruffieux P, Wang S, Yang B, et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology[J]. Nature, 2016, 531(7595): 489-492.
[44] Mccann E, Fal’ko V I. Landau-level degeneracy and quantum hall effect in a graphite bilayer[J]. Phys Rev Lett, 2006, 96(8): 086805.
[45] Oostinga J B, Heersche H B, Liu X, et al. Gate-induced insulating state in bilayer graphene devices[J]. Nat Mater, 2008, 7(2): 151-157.
[46] Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99(21): 216802.
[47] Mccann E. Asymmetry gap in the electronic band structure of bilayer graphene[J]. Phys Rev B, 2006, 74(16): 161403.
[48] Lee S, Lee K, Zhong Z. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition[J]. Nano Letters, 2010, 10(11): 4702-4707.
[49] Zhou H, Yu W J, Liu L, et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene[J]. Nat Commun, 2013, 4: 2096.
[50] Hao Y, Wang L, Liu Y, et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene[J]. Nat Nanotech, 2016, 11(5): 426-431.
[51] Craciun M F, Yamamotom R, Oostinga J B, et al. Trilayer graphene is a semimetal with a gate-tunable band overlap[J]. Nat Nanotech, 2009, 4(6): 383-388.
[52] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.
[53] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nat Photonics, 2010, 4(9): 611-622.
[54] Kim Y D, Kim H, Cho Y, et al. Bright visible light emission from graphene[J]. Nat Nanotech, 2015, 10(8): 676-681.
[55] Optics: graphene shines bright in a vacuum[J]. Nature, 2015, 522(7556): 258-258.
[56] Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Adv Funct Mater, 2009, 19(19): 3077-3083.
[57] Xing G, Guo H, Zhang X, et al. The physics of ultrafast saturable absorption in graphene[J]. Optics Express, 2010, 18(5): 4564-4573.
[58] Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene[J]. Phys Rev Lett, 2010, 105(9): 097401.
[59] Zhang H, Virally S, Bao Q, et al. Z-scan measurement of the nonlinear refractive index of graphene[J]. Optics Letters, 2012, 37(11): 1856-1858.
[60] Wang L F, Zheng Q S. Extreme anisotropy of graphite and single-walled carbon nanotube bundles[J]. Appl Phys Lett, 2007, 90(15): 153113.
[61] Lee G H, Cooper R C, An S J, et al. High-strength chemical-vapor-deposited graphene and grain boundaries[J]. Science, 2013, 340(6136): 1073-1076.
[62] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[63] Blees M K, Barnard A W, Rose P A, et al. Graphene kirigami[J]. Nature, 2015, 524(7564): 204-207.
[64] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8(3): 902-907.
[65] Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nat Mater, 2010, 9(7): 555-558.
[66] Chen S, Wu Q, Mishra C, et al. Thermal conductivity of isotopically modified graphene[J]. Nat Mater, 2012, 11(3): 203-207.
[67] Kong Q Q, Liu Z, Gao J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Adv Funct Mater, 2014, 24(27): 4222-4228.
[68] Song N J, Chen C M, Lu C, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. J Mater Chem A, 2014, 2(39): 16563-16568.
[69] Hu S, Lozada Hidalgo M, Wang F C, et al. Proton transport through one-atom-thick crystals[J]. Nature, 2014, 516(7530): 227-230.
[70] Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nat Nanotech, 2015, 10(5): 459-464.
[71] Zhang W F, Zhang J, Chen X Y, et al. Bitrialkylsilylethynyl thienoacenes: synthesis, molecular conformation and crystal packing, and their field-effect properties[J]. J Mater Chem C, 2013, 1(39): 6403-6410.
[72] Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754.
[73] Liu G, Jin W, Xu N. Graphene-based membranes[J]. Chem Soc Rev, 2015, 44(15): 5016-5030.
[74] Koh D Y, Lively R P. Nanoporous graphene: membranes at the limit[J]. Nat Nanotech, 2015, 10(5): 385-386.
[75] Zhang T, Chang H, Wu Y, et al. Macroscopic and direct light propulsion of bulk graphene material[J]. Nat Photon, 2015, 9(7): 471-476.
[76] Wang Y, Wong D, Shytov A V, et al. Observing atomic collapse resonances in artificial nuclei on graphene[J]. Science, 2013, 340(6133): 734-737.
[77] González Herrero H, Gómez Rodríguez J M, Mallet P, et al. Atomic-scale control of graphene magnetism by using hydrogen atoms[J]. Science, 2016, 352(6284): 437-441.
[78] Blake P, Hill E W, Castro Neto A H, et al. Making graphene visible[J]. Appl Phys Lett, 2007, 91(6): 063124.
[79] Ni Z H, Wang H M, Kasim J, Fan H M, et al. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Lett, 2007, 7(9): 2758-2763.
[80] Wang H, Wang G, Bao P, et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation[J]. J Am Chem Soc, 2012, 134(8): 3627-3630.
[81] Mohsin A, Liu L, Liu P, et al. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper[J]. ACS Nano, 2013, 7(10): 8924-8931.
[82] Geng D C, Wu B, Guo Y L, et al. Fractal etching of graphene[J]. J Am Chem Soc, 2013, 135(17): 6431-6434.
[83] Hao Y, Bharathi M S, Wang L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723.
[84] Duong D L, Han G H, Lee S M, et al. Probing graphene grain boundaries with optical microscopy[J]. Nature, 2012, 490(7419): 235-239.
[85] Wu B, Geng D, Guo Y, et al. Equiangular hexagon-shape-controlled synthesis of graphene on copper surface[J]. Adv Mater, 2011, 23(31): 3522-3525.
[86] Geng D C, Meng L, Chen B Y, et al. Controlled growth of single-crystal twelve-pointed graphene grains on a liquid cu surface[J]. Adv Mater, 2014, 26(37): 6423-6429.
[87] Wang Z J, Weinberg G, Zhang Q, et al. Direct observation of graphene growth and associated copper substrate dynamics by in-situ scanning electron microscopy[J]. ACS Nano, 2015, 9(2): 1506-1519.
[88] Ismach A, Druzgalski C, Penwell S, et al. Direct chemical vapor deposition of graphene on dielectric surfaces[J]. Nano Lett, 2010, 10(5): 1542-1548.
[89] Chen J Y, Wen Y G, Guo Y L, et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates[J]. J Am Chem Soc, 2011, 133(44): 17548-17551.
[90] Russo C J, Golovchenko J A. Atom-by-atom nucleation and growth of graphene nanopores[J]. PNAS, 2012, 109(16): 5953-5957.
[91] Huang P Y, Ruiz Vargas C S, van der Zande A M, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts[J]. Nature, 2011, 469(7330): 389-392.
[92] Wu Y A, Fan Y, Speller S, et al. Large single crystals of graphene on melted copper using chemical vapor deposition[J]. ACS Nano, 2012, 6(6): 5010-5017.
[93] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63.
[94] Choi J S, Kim J S, Byun I S, et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene[J]. Science, 2011, 333(6042): 607-610.
[95] Tang S, Wang H, Zhang Y, et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition[J]. Sci Rep, 2013, 3: 2666.
[96] Yang W, Chen G, Shi Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nat Mater, 2013, 12(9): 792-797.
[97] Batra I P, García N, Rohrer H, et al. A study of graphite surface with stm and electronic structure calculations[J]. Surf Sci, 1987, 181(1-2): 126-138.
[98] Yu Q, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nat Mater, 2011, 10(6): 443-449.
[99] Cai J, Pignedoli C A, Talirz L, et al. Graphene nanoribbon heterojunctions[J]. Nat Nanotech, 2014, 9(11): 896-900.
[100] Li G, Zhou H, Pan L, et al. Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate[J]. J Am Chem Soc, 2015, 137(22): 7099-7103.
[101] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18): 187401.
[102] Ferrari A C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143(1-2): 47-57.
[103] Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5-6): 51-87.