前言
随着计算机与计算技术的进步以及由此而发展出的数值计算,先后又与工程学科、基础学科乃至人文学科等多种学科交叉融合,已成功建立了一些新的学科,如计算力学、计算化学、计算物理学、计算生物学等。可见数值计算与理论研究以及实验探索已经成为研究科学与技术问题的三个基本方法,同时数值计算也成为解决实际问题的一个重要手段。
在20世纪70年代,数值计算与流体力学相结合开创性地发展出计算流体力学(computational fluid dynamics),随后又与传热相结合发展出计算传热学(computational heat transfer)。通过这两个学术领域中的数值计算,能够预测在各种情况下流动和传热过程中的状态和有关参数信息,因此在包括化学工程在内的广阔工程领域中得到了广泛应用,获得了显著效果,解决了一些过去无法解决的难题,如预测设备内的流速场和温度场等。
但在化学工程学科中,由于一般化工过程的主要目标是物质的转化,特别是其中的传质和化学反应,它不仅需要知道有关流体流动及传热过程的情况,更需要了解过程局部及整体的传质和化学反应状态及有关参数方面的全部信息,因为这些信息是预测化工设备效能以及优化设计或对设备评估改进所不可缺少的重要依据,特别是对表征主要传质状态的浓度场(浓度分布)尤为重要。然而浓度场的计算与预测目前只有两种方法:一种方法是假设湍流施密特数()或湍流佩克莱数()为一个常数,并结合计算流体力学模拟结果来计算;另一种方法是采用通过惰性示踪剂在小型或类似的实验中得到的有关经验关联式来计算。但这些方法在理论上和实践上都被证明是不可靠的,甚至有相当大的误差,因此寻求可靠的计算与预测传质状态的方法,包括设备内的浓度场以及有关传质过程的重要参数(如湍流传质扩散系数等),就成为化工学者亟待解决的问题。
然而化工传质过程常常是多相、多组分、非理想、非恒温、非平衡、非稳态的复杂过程,影响传质设备效能的因素很多,除流速、温度和浓度分布外,还有界面效应、多组分效应、结构、尺度效应等许多方面,而且彼此相互作用,这使预测传质设备内浓度场、未知的传质参数以及局部和整体传质效率的准确数学模拟与计算更为复杂,需要采用数值方法才有可能解决。为此而发展出的数值计算与传质过程理论相结合并与相关学科交叉的计算传质学(computational mass transfer),就自然成为需要进行探索的一个新领域。
计算传质学是研究通过数值计算来预测传质过程及设备内与传质有关的全部信息的理论和方法,包括预测浓度场、局部与整体的传递参数、界面效应、传质效率以及同时获得的流速场、温度场等方面的信息,从而能够定量描述传质过程的全面状态与评估过程的完善程度。
计算传质学中需要解决的关键问题之一是对传质微分方程的封闭,并且在此基础上与计算流体力学和计算传热学的方程相结合,从而建立对传质过程中的动量、质量和热量传递现象严格模拟的计算传递体系。在此基础上可以求解在传质、传热、传质和化学反应耦合条件下化工设备中的浓度场,同时也能得到流速场、温度场、压力场和有关的传递参数的分布以及界面传递、多组分系统、设备结构及尺度等效应的影响。根据这些结果就能更准确地进行优化设计或对现有设备进行评估,以发现设备的薄弱环节并加以改进。因此对计算传质学的探索,不但可提高化工传质过程数学模拟的水平,还能据此提高传质效能和进一步了解过程传递的实质。此外,还有助于将实验室结果直接模拟放大到工业传质设备。从广义观点来说,计算传质学可应用于含有传质的所有过程,而不只限于化工过程。由此可见,开拓发展计算传质学具有理论和现实意义。
化学工程学科经过近百年的发展,先后经过了以“单元操作”为标志的第一里程,以及以“三传一反”(动量传递、热量传递、质量传递和化学反应工程)为标志的第二里程。化学工程学科发展的第三里程目前还未有定论,但化学工程与数值计算技术及相关学科交叉融合并向多尺度方向发展(包括微观尺度、介观尺度、宏观尺度以及大宏观尺度),从而形成的“计算化学工程”,无疑将会是第三里程中的主要发展内容之一,而化工计算传质学将是其中一个重要的组成部分。
有鉴于此,近年来我们和所指导的一些研究生开展了计算传质学的初期研究工作,主要是探讨传质方程的封闭、计算传质学在化工过程中的应用以及界面效应对传质的影响,以期初步建立化工计算传质学的框架。本书是上述研究工作的部分介绍。
化工计算传质学目前包含化工过程传质计算与界面传质计算两个方面,二者既有联系,但探讨重点又各不相同。一方面,化工过程传质计算主要是探讨各类化工过程和设备中的浓度分布以及速度、温度、压力和有关参数的局部与整体状态的预测,并且考察多组分系统、设备结构与尺度大小等因素对传质效率的影响,从而能使设备设计最优化或者提出提高现有传质效率的方案;另一方面是界面传质计算,主要探讨界面效应对传质过程的影响及传质过程的机理,从而进一步理解传质现象,以期改进传统的传质理论及寻求提高传质效率的根本途径。
本书内容只论及化学工程中气液传质过程的化工计算传质学。第1章给出计算传质学的基本方程;第2、第3、第4、第5、第6章分别介绍计算传质学在精馏、化学吸收、吸附、固定床催化反应与流态化过程的应用举例;第7章介绍多组分传质的计算,包括传质系数及平衡组成;第8、第9章分别讨论传质过程中的界面效应,包括Marangoni效应、Rayleigh效应以及采用格子-Boltzmann方法在界面传质的模拟。书中附录Ⅰ和附录Ⅱ分别扼要叙述计算流体力学和计算传热学的基础,作为计算传质学的相关知识;附录Ⅲ、附录Ⅳ和附录Ⅴ分别给出了文献中较为常用的填料塔的传质系数、有效传质面积以及持液量的有关关联式;关于用于格子-Boltzmann方法的粒子平衡态分布函数的推导及其与Navier-Stokes方程之间的关系分别由附录Ⅵ和附录Ⅶ给出。
由于我们开展此项研究工作的时间较短,离发展化工计算传质学的目标还很远,故本书只涉及计算传质学的基础。书中除附录Ⅰ、附录Ⅱ内容为介绍必要的预备知识外,其余内容均取自我们近年来指导的一些研究生科研工作及共同在学术刊物上发表的论文。因此本书可以说是我们和有关研究生们的集体之作。
编写本书的目的有二:其一是作为化学工程专业研究生课程“化工计算传质学”的参考书;其二是为今后研究生及有关人员进一步开展化工计算传质学的研究和应用提供参考。
本书的研究工作是在天津大学化学工程研究所及化学工程联合国家重点实验室(天津大学)进行,并且得到国家自然科学基金重点项目20136010及20736005的资助。本书的编写还得到天津大学化学工程研究所的大力支持以及研究生们对编写工作的协助,对此我们表示衷心的感谢。
希望读者对本书提出批评和指正。
2016年6月