- 五年制高职数学(第三册)
- 张瑾 邹秀英 赵春芳
- 599字
- 2021-04-02 08:41:10
思考与总结
一、导数与微分的概念与结论
1.导数的概念
(1)导数的定义:__________.
(2)导数f′(x0)的几何意义:__________,切点处的切线方程:__________;法线方程:__________.
(3)导数f′(t0)的物理意义:__________;二阶导数f″(t0)的物理意义:__________.
(4)函数在x0点连续与可导的关系:__________.
(5)高阶导数的记号与求法:__________.
2.微分的概念
(1)f(x)在任意点x处的微分:__________.
(2)微分与导数的关系:__________.
二、导数与微分的基本公式与运算法则
1.基本初等函数的导数公式
(1)(c)′=__________(c为常数); (2)(xα)′=__________(α为任意实数);
(3)(x)′=__________; (4)(x2)′=__________;
(7)(ax)′=__________(a>0,a≠1);(8)(ex)′=__________;
(9)(logax)′=__________; (10)(ln x)′=__________;
(11)(sin x)′=__________; (12)(cos x)′=__________;
(13)(tan x)′=__________; (14)(cotx)′=__________;
(15)(secx)′=__________; (16)(cscx)′=__________;
(17)(arcsin x)′=__________; (18)(arccos x)′=__________;
(19)(arctan x)′=__________; (20)(arccotx)′=__________.
2.导数的四则运算法则
(1)(u±v)′=__________; (2)(uv)′=__________;
(3)(cu)′=__________; (4)=__________(v≠0);
(5)=__________(v≠0,c为常数)
3.复合函数的求导法则:__________.
(1)若u=u(x)可导,则(sin u)′x=__________;(ln u)′x=__________.
(2)若u=2x,则(cos 2x)′=__________;(arctan 2x)′=__________.
4.隐函数的求导法:__________.
5.微分形式的不变性:__________.
(1)d(eu)=__________;(2)(uα)′=__________(α∈R);(3)(tan u)′=__________.
三、可导、可微、连续与极限存在的关系:
可微__________可导__________连续__________极限存在.