思考与总结

一、导数与微分的概念与结论

1.导数的概念

(1)导数的定义:__________.

(2)导数f′(x0)的几何意义:__________,切点处的切线方程:__________;法线方程:__________.

(3)导数f′(t0)的物理意义:__________;二阶导数f″(t0)的物理意义:__________.

(4)函数在x0点连续与可导的关系:__________.

(5)高阶导数的记号与求法:__________.

2.微分的概念

(1)f(x)在任意点x处的微分:__________.

(2)微分与导数的关系:__________.

二、导数与微分的基本公式与运算法则

1.基本初等函数的导数公式

(1)(c)′=__________(c为常数);  (2)(xα)′=__________(α为任意实数);

(3)(x)′=__________;  (4)(x2)′=__________;

(7)(ax)′=__________(a>0,a≠1);(8)(ex)′=__________;

(9)(logax)′=__________; (10)(ln x)′=__________;

(11)(sin x)′=__________; (12)(cos x)′=__________;

(13)(tan x)′=__________; (14)(cotx)′=__________;

(15)(secx)′=__________; (16)(cscx)′=__________;

(17)(arcsin x)′=__________; (18)(arccos x)′=__________;

(19)(arctan x)′=__________; (20)(arccotx)′=__________.

2.导数的四则运算法则

(1)(u±v)′=__________;  (2)(uv)′=__________;

(3)(cu)′=__________;  (4)=__________(v≠0);

(5)=__________(v≠0,c为常数)

3.复合函数的求导法则:__________.

(1)若u=u(x)可导,则(sin u)′x=__________;(ln u)′x=__________.

(2)若u=2x,则(cos 2x)′=__________;(arctan 2x)′=__________.

4.隐函数的求导法:__________.

5.微分形式的不变性:__________.

(1)d(eu)=__________;(2)(uα)′=__________(α∈R);(3)(tan u)′=__________.

三、可导、可微、连续与极限存在的关系:

可微__________可导__________连续__________极限存在.