1.1 二阶与三阶行列式

一、二阶行列式

考虑用消元法求解二元线性方程组

42692-00-008-01.png

其中x1x2是未知量.为消去x2,用a22a12分别乘以两个方程的两端,得

42692-00-008-02.png

然后两个方程相减,得

a11a22-a12a21x1=a22b1-a12b2

同理,消去x1,得

a11a22-a12a21x2=a11b2-a21b1

a11a22-a12a21≠0时,方程组(1.1.1)有唯一的解

42692-00-008-03.png

这就是一般二元线性方程组(1.1.1)的求解公式.为了便于记忆这个公式,我们引进新的记号来表示结果(1.1.2).

定义1.1.1(二阶行列式) 设有4个可以进行加法和乘法运算的元素abcd排成两行两列,引用符号

42692-00-008-04.png

并称之为二阶行列式.行列式也可简记为D

由定义可知:二阶行列式实际上是一个算式,即从左上角到右下角的对角线(主对角线)上两元素相乘之后,减去从右上角到左下角的对角线(副对角线)上两元素的乘积,称之为计算二阶行列式的对角线法则.

:这里abcd都是数,该行列式的计算结果就是一个数.例如

42692-00-009-01.png

按照二阶行列式的定义,式(1.1.2)中x1x2的表达式中的分母、分子可分别记为

42692-00-009-02.png

显然,Dii=1,2)即为D中的第i列换成方程组(1.1.1)的常数列所得到的行列式.

于是,当D≠0时,二元线性方程组(1.1.1)的解可唯一地表示为

42692-00-009-03.png

此为求解二元线性方程组的克莱姆(Cramer)法则

记忆方法:

(1)x1x2的分母相同,其行列式由(1.1.1)中未知量系数按其原有的相对位置排成,称为方程组(1.1.1)的系数行列式

(2)x1x2的分子不同,分别是把分母行列式中x1x2的系数位置换成两个常数项,并保持两数原有的上下相对位置.

例1.1.1 用二阶行列式求解线性方程组

42692-00-009-04.png

 由于42692-00-009-05.png,且

42692-00-009-06.png

由式(1.1.4)得

42692-00-009-07.png

二、三阶行列式

同样,利用二阶行列式定义三阶行列式为以下三项的代数和:

定义1.1.2(三阶行列式)设有9个可以进行加法和乘法运算的元素排成三行三列,引用符号

42692-00-010-01.png

它的每项是原行列式中第一行的元素与划去该元素所在的行和列后的一个二阶行列式之积,每项的符号为(-1)1+j,其中j为该元素所在的列数(j=1,2,3).

例1.1.2 计算

42692-00-010-02.png

42692-00-010-03.png

类似于二元线性方程组的克莱姆法则,对于三元线性方程组

42692-00-010-04.png

42692-00-010-05.png

则当D≠0时,线性方程组(1.1.6)有唯一解

42692-00-010-06.png

此为求解三元线性方程组的克莱姆(Cramer)法则.

例1.1.3 用三阶行列式求解线性方程组

42692-00-010-07.png

 由于42692-00-010-08.png,且

42692-00-010-09.png

由式(1.1.7)得

42692-00-011-01.png

可以看出,对于未知量个数等于方程个数的二、三元线性方程组,利用行列式这个工具来求解(如果有解)十分简便,结果也容易记忆.我们自然想到对未知量个数等于方程个数的nn>3)元线性方程组的求解,是否也有类似的结果?下一节,我们将用递归的方法给出n阶行列式的定义并讨论它们的一般性质和应用.

习题1-1

1. 计算下列3阶行列式.

42692-00-011-02.png

2. 求解下列线性方程组.

42692-00-011-03.png