- 股票大数据挖掘实战:股票分析篇
- 吴梅红 洪志令
- 1174字
- 2024-11-04 17:01:21
前言
投资股票是为了获得更大的收益,然而由于股票市场具有较大的动态特性,股票投资的收益与风险往往是成正比的,投资收益越高,存在的风险就越大。有效地进行股票价格的预测,最大限度地规避股票风险,增加投资收益,是股票投资者最关注的热点问题。
近年来,中国股市起起伏伏,熊冠全球,许多投资者伤痕累累,损失惨重,股市已成为大多数中国股民的伤心地。中国股市的现状是多方面因素共同作用的结果,作为普通的投资者无法改变这一现实,怨天尤人于事无补;要想在股市中博弈,立于不败之地,只能从现实出发,从自身做起。
在股票交易事务处理中,每天有大量的交易信息数据汇入数据仓库,这些数据无疑有益于股民了解股市的走势,做出正确的投资决策,然而如何从海量数据中提取有用的并最终可理解的模式是投资者最为关心的问题。
在大数据时代,数据挖掘无疑是最炙手可热的技术。数据挖掘的作用是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的,人们事先不知道但又是潜在有用的信息和知识的过程。数据挖掘技术恰好解决了数据利用的问题,所以数据挖掘与股票投资便很自然地结合在一起。数据挖掘在国内也是一个新领域,加上较早之前计算能力的限制,所以还没有关于股票投资与数据挖掘相结合的相关书籍,以及股票大数据领域的规模应用案例。虽然有一些量化投资方面的著作,但是量化投资和股票挖掘还是存在相当大的差别。在这样的背景下,本书结合丰富的金融业数据资源,以及构建的股票大数据挖掘平台,介绍如何利用数据挖掘技术进行股票挖掘和投资实践。
首先介绍数据挖掘技术。数据挖掘是一个交叉学科,融合了统计分析、模式识别、机器学习、信息检索、数据库、信息论和最优化算法等领域的学习思想,所以其涉及的基础理论比较多,并且分散。其次介绍数据挖掘技术怎么应用到股票投资领域。对于有兴趣进行数据挖掘应用实践的读者来说,常常有这样的困惑:如何将实际问题与已经学到的方法、原理联系起来,如何将数据挖掘技术有效地运用在实际应用中,给使用者带来价值。
本书以笔者团队的数据挖掘工作为基石,架设起研究和应用的桥梁,帮助读者从应用实例中学习数据挖掘和股票投资方法。具体而言,本书以不同角度的股票实际应用为导向,始终以实际案例来讲解应用之下的技术和理论。本书对每个股票应用案例都有详细的解析,全面介绍了如何将一个实际问题抽象和转化为数据挖掘的问题,让读者明白来龙去脉。在过去的16年里,笔者一直从事数据挖掘和股票投资方面的学习和研究,本书也算是笔者过去多年学习和研究的小结。
为了早点写好本书,在写书期间,笔者将全部业余时间投入到写书中去,每个晚上,每个周末。虽然辛苦,但确实很有成就感,是这份成就感给了我执着的动力和快乐,最终完成了此书。我深切地希望,本书能够在中国的基金、公募、私募以及个人投资者提高股票分析和股票投资水平方面起到抛砖引玉的作用。