- 基于机器学习的数据缺失值填补:理论与方法
- 赖晓晨 张立勇 刘辉 吴霞
- 1052字
- 2021-03-31 21:04:27
参考文献
[1]谷立丹.无线传感器网络不确定数据估计算法研究[D].哈尔滨:哈尔滨工程大学,2017.
[2]金勇进,邵军.缺失数据的统计处理[M].北京:中国统计出版社,2009.
[3]祁瑞华.不完整数据分类知识发现算法研究[D].辽宁:大连理工大学,2011.
[4]MEEYAI S.Logistic Regression with Missing Data:A Comparison of Handling Methods,and Effects of Percent Missing Values[J].Journal of Traff ic and Logistics Engineering,2016,4(2):128-134.
[5]ZHANG S,ZHANG J,ZHU X.Missing Value Imputation Based on Data Clustering[J].Transactions on Computational Science I,2008:128-138.
[6]YANG K,LI J,WANG C.Missing Values Estimation,in Microarray Data with Partial Least Squares Regression[J].Computational Science-ICCS,2006(2004):662-669.
[7]DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum Likelihood from Incomplete Data via the EM Algorithm[J].Journal of the Royal Statistical Society.Series B,1977,39(1):1-38.
[8]Rubin D B.Multiple Imputations in Sample Surveys[J].Am Statist Assoc,1978:20-34.
[9]Meng X L,Rubin D B.Performing Likelihood Ration Tests with Multiple Imputed Data Sets[J].Biometrika,1992,79(1):103-11.
[10]Schafer J L.Analysis of Incomplete Multivariate Data[M].Chapman and Hall,1997:286-293.
[11]ZHANG S.Nearest Neighbor Selection for Iteratively KNn,imputation[J].Journal of Systems and Software,2012,85(11):2541-2552.
[12]Troyanskaya O,Cantor M,Sherlock G,et al.Missing Value Estimation Methods for DNA Microarrays[J].Bioinformatics,2001,17(6):520-525.
[13]Gerhard Tutz,Shahla Ramzan.Improved Methods for the Imputation of Missing Data by Nearest Neighbor Methods[J].Computational Statistics & Data Analysis,2015,90:84-99.
[14]毕永朋.均值填补算法的改进和研究[D].江西:江西理工大学计算机科学与技术学院,2018.
[15]Satish Gajawada,Durga Toshniwal.Missing Value Imputation Method based on Clustering and Nearest Neighbors[J].International Journal of Future Computer and Communicaion,2012,1(2):206-208.
[16]马永军,汪睿,李亚军,陈海山.利用聚类分析和离群点检测的数据填补方法[J].计算机工程与设计,2019,40(03):744-747+761.
[17]徐鹏雅.基于一种双聚类算法的成分数据缺失值填补[D].浙江:浙江财经大学,2019.
[18]Shamini Raja Kumaran,Mohd Shahizan Othman,Lizawati Mi Yusuf,Arda Yunianta.Estimation of Missing Values Using Hybrid Fuzzy Clustering Mean and Majority Vote for Microarray Data,Procedia Computer Science,2019,163:145-153.
[19]AYDILEK I B,ARSLAN A.a Hybrid Method for Imputation of Missing Values Using Optimized Fuzzy C-means with Support Vector Regression and a Genetic Algorithm[J].Information Sciences,2013,233:25-35.
[20]Lim Kian Ming,Loo Chu Kiong,Lim Way Soong.Autonomous and Deterministic Supervised Fuzzy Clustering with Data Imputation Capabilities[J].Applied Soft Computing,2011,11(1):1117-1125.
[21]Fessant F,Midenet S.Self-organising Map for Data Imputation and Correction,in Surveys[J].Neural Computing & Applications,2002,10(4):300-310.
[22]Wang S H.Application of Self-organising Maps for Data Mining with Incomplete Data Sets[J].Neural Computing & Applications,2003,12:42-48.
[23]Marseguerra M,Zoia A.the AutoAssociative Neural Network in Signal Analysis:II.Application to on-line Monitoring of a Simulated BWR Component[J].Annals of Nuclear Energy,2005,32(11):1207-1223.
[24]Abdella M,Marwala T.the use of Genetic Algorithms and Neural Networks to Approximate Missing Data in Database[C].The IEEE 3rd International Conference on Computational Cybernetics,2015:207-212.
[25]Nelwamondo F V,Golding D,Marwala T.A Dynamic Programming Approach to Missing Data Estimation Using Neural Networks[J].Information Sciences,2013,237:49-58.
[26]Aydilek I B,Arslan A.a Novel Hybrid Approach to Estimating Missing Values in Databases Using k-nearest Neighbors and Neural Networks[J].International Journal of Innovative Computing,Information and Control,2012,8(7):4705-5717.
[27]Ravi V,Krishna M.a new Online Data Imputation Method Based on General Regression Autoassociative Neural Network[J].Neurocomputing,2014,138:106-113.
[28]Gautam C,Ravi V.Counter Propagation Auto-associative Neural Network Based Data Imputation[J].Information Sciences,2015,325:288-299.
[29]Gautam C,Ravi V.Data Imputation Via Evolutionary Computation,Clustering and a Neural Network[J].Neurocomputing,2015,156:134-142.
[30]Janssen K J,Donders A R,Harrell J F E,et al.Missing Covariate Data in Medical Research:to Impute is Better than to Ignore[J].Journal of Clinical Epidemiology,2010,63(7):721-727.
[31]Jerez J M,Molina I,García-Laencina P J,et al.Missing Data Imputation Using Statistical and Machine Learning Methods in a Real Breast Cancer Problem[J].Artif icial Intelligence in Medicine,2010,50(2):105-115.
[32]Shang Q,Yang Z,Gao S,et al.an,imputation Method for Missing Traff ic Data Based on FCM Optimized by PSO-SVR[J].Journal of Advanced Transportation,2018,2018:Article ID 2935248.
[33]Duan Y,Lv Y,Liu Y L,et al.an Eff icient Realization of Deep Learning for Traff ic Data Imputation[J].Transportation Research Part C:Emerging Technologies,2016,72:168-181.
[34]Tian Y,Zhang K,Li J,et al.LSTM-based Traff ic Flow Prediction with Missing Data[J].Neurocomputing,2018,318:297-305.
[35]Sohae O.Multiple Imputation on Missing Values in Time Series Data[D].Durham:Duke University,2015.
[36]Nkuna T R,Odiyo J O.Filling of Missing Rainfall Data in Luvuvhu River Catchment Using Artif icial Neural Networks[J].Physics and Chemistry of the Earth,2011,36(14-15):830-835.
[37]Coulibaly P,Evora N D.Comparison of Neural Network Methods for Inf illing Missing Daily Weather Records[J].Journal of Hydrology,2007,341(1-2):27-41.
[38]王燚烊,王瑞福,武建辉.大气PM2.5中多环芳烃浓度缺失值填补方法的研究[J].中国卫生统计,2019,36(06):878-882.
[39]侯贺.缺失值处理方法的研究及其在软测量技术中的应用[D].沈阳:东北大学,2011.
[40]刘功生.信息缺失情况下基于HMM的旋转机械故障诊断方法研究[D].衡阳:南华大学,2015.