四、智能制造的关键技术

智能制造融合了信息技术、先进制造技术、自动化技术和人工智能技术。智能制造包括开发智能产品、应用智能装备、自底向上建立智能产线、构建智能车间、打造智能工厂、践行智能研发、形成智能物流和供应链体系、开展智能管理、推进智能服务、最终实现智能决策。

在智能制造的关键技术当中,智能产品与智能服务可以帮助企业带来商业模式的创新;智能装备、智能产线、智能车间到智能工厂,可以帮助企业实现生产模式的创新;智能研发、智能管理、智能物流与供应链则可以帮助企业实现运营模式的创新;而智能决策则可以帮助企业实现科学决策。如图1-5所示。

图1-5 智能制造的关键技术

1.智能产品

智能产品通常包括机械、电气和嵌入式软件,具有记忆、感知、计算和传输功能。典型的智能产品包括智能手机、智能可穿戴设备、无人机、智能汽车、智能家电、智能售货机等,包括很多智能硬件产品。智能装备也是一种智能产品。企业应该思考如何在产品上加入智能化的单元,提升产品的附加值。

2.智能服务

基于传感器和物联网,智能服务可以感知产品的状态,从而进行预防性维修维护,及时帮助客户更换备品备件,甚至可以通过了解产品运行的状态,帮助客户带来商业机会。还可以采集产品运营的大数据,辅助企业进行市场营销的决策。

此外,企业通过开发面向客户服务的APP,也是一种智能服务的手段,可以针对企业购买的产品提供有针对性的服务,从而锁定用户,开展服务营销。

3.智能装备

制造装备经历了机械装备到数控装备的过程,目前正在逐步发展为智能装备。智能装备具有检测功能,可以实现在机检测,从而补偿加工误差,提高加工精度,还可以对热变形进行补偿。以往一些精密装备对环境的要求很高,现在由于有了闭环的检测与补偿,可以降低对环境的要求。

4.智能产线

很多行业的企业高度依赖自动化生产线,比如钢铁、化工、制药、食品饮料、烟草、芯片制造、电子组装、汽车整车和零部件制造等,实现自动化的加工、装配和检测,一些机械标准件生产也应用了自动化生产线,比如轴承。但是,装备制造企业目前还是以离散制造为主。很多企业的技术改造重点,就是建立自动化生产线、装配线和检测线。

自动化生产线可以分为刚性自动化生产线和柔性自动化生产线,柔性自动化生产线一般建立了缓冲。为了提高生产效率,工业机器人、吊挂系统在自动化生产线上应用越来越广泛。

5.智能车间

一个车间通常有多条生产线,这些生产线要么生产相似零件或产品,要么有上下游的装配关系。要实现车间的智能化,需要对生产状况、设备状态、能源消耗、生产质量、物料消耗等信息进行实时采集和分析,进行高效排产和合理排班,显著提高设备利用率(OEE)。因此,无论什么制造行业,制造执行系统(MES)成为企业的必然选择。

6.智能工厂

一个工厂通常由多个车间组成,大型企业有多个工厂。作为智能工厂,不仅生产过程应实现自动化、透明化、可视化、精益化;同时,产品检测、质量检验和分析、生产物流也应当与生产过程实现闭环集成。一个工厂的多个车间之间要实现信息共享、准时配送、协同作业。一些离散制造企业也建立了类似流程制造企业那样的生产指挥中心,对整个工厂进行指挥和调度,及时发现和解决突发问题,这也是智能工厂的重要标志。

智能工厂必须依赖无缝集成的信息系统支撑,主要包括PLM(产品生命周期管理)、ERP(企业资源计划)、CRM(客户关系管理)、SCM(对企业供应链的管理)和MES(生产过程执行系统)五大核心系统。大型企业的智能工厂需要应用ERP系统制订多个车间的生产计划,并由MES系统根据各个车间的生产计划进行详细排产,MES排产的粒度是天、小时,甚至分钟。

7.智能研发

离散制造企业在产品研发方面,已经应用了CAD、CAM、CAE、CAPP、EDA等工具软件和PDM(产品数据管理)、PLM系统,但很多企业应用这些软件的水平并不高。企业要开发智能产品,需要机电软件多学科的协同配合;要缩短产品研发周期,需要深入应用仿真技术,建立虚拟数字化样机,实现多学科仿真,通过仿真减少实物试验;需要贯彻标准化、系列化、模块化的思想,以支持大批量客户定制或产品个性化定制;需要将仿真技术与试验管理结合起来,以提高仿真结果的置信度。

8.智能管理

制造企业核心的运营管理系统还包括人力资产管理系统(HCM)、客户关系管理系统(CRM)、企业资产管理系统(EAM)、能源管理系统(EMS)、供应商关系管理系统(SRM)、企业门户(EP)、业务流程管理系统(BPM)等,国内企业也把办公自动化(OA)作为一个核心信息系统。为了统一管理企业的核心主数据,近年来主数据管理(MDM)也在大型企业开始部署应用。实现智能管理和智能决策,最重要的条件是基础数据准确和主要信息系统无缝集成。

9.智能物流与供应链

制造企业内部的采购、生产、销售流程都伴随着物料的流动,因此,越来越多的制造企业在重视生产自动化的同时,也越来越重视物流自动化,自动化立体仓库、无人引导小车(AGV)、智能吊挂系统得到了广泛的应用;而在制造企业和物流企业的物流中心,智能分拣系统、堆垛机器人、自动轮道系统的应用日趋普及。WMS(仓储管理系统)和TMS(运输管理系统)也受到制造企业和物流企业的普遍关注。

10.智能决策

企业在运营过程中,产生了大量的数据。一方面是来自各个业务部门和业务系统产生的核心业务数据,比如与合同、回款、费用、库存、现金、产品、客户、投资、设备、产量、交货期等有关的数据,这些数据一般是结构化的数据,可以进行多维度的分析和预测,这就是BI(Business Intelligence,业务智能)技术的范畴,也被称为管理驾驶舱或决策支持系统。

同时,企业可以应用这些数据提炼出企业的KPI(关键绩效指标),并与预设的目标进行对比,对KPI进行层层分解,来对干部和员工进行考核,这就是EPM(Enterprise Performance Management,企业绩效管理)的范畴。从技术角度来看,内存计算是BI的重要支撑。

小提示

智能制造的十项技术之间是息息相关的,制造企业应当渐进式、理性地推进这十项智能技术的应用。

相关链接:5G技术场景支撑智能制造

作为新一代移动通信技术,5G技术切合了传统制造企业智能制造转型对无线网络的应用需求,能满足工业环境下设备互联和远程交互应用需求。在物联网、工业自动化控制、物流追踪、工业AR、云化机器人等工业应用领域,5G技术起着支撑作用。

1.物联网

随着工厂智能化转型的推进,物联网作为连接人、机器和设备的关键支撑技术正受到企业的高度关注。这种需求在推动物联网应用落地的同时,也极大地刺激了5G技术的发展。

2.工业自动化控制

这是制造工厂中最基础的应用,核心是闭环控制系统。5G可提供极低时延长、高可靠、海量连接的网络,使得闭环控制应用通过无线网络连接成为可能。

3.物流追踪

从仓库管理到物流配送均需要广覆盖、深覆盖、低功耗、大连接、低成本的连接技术。此外,虚拟工厂的端到端整合跨越产品的整个生命周期,要连接分布广泛的已售出的商品,也需要低功耗、低成本和广覆盖的网络,企业内部或企业之间的横向集成也需要无所不在的网络,5G网络能很好地满足这类需求。

4.工业AR

在智能工厂生产过程中,人发挥更重要的作用。由于未来工厂具有高度的灵活性和多功能性,这对工厂车间工作人员有更高的要求。为快速满足新任务和生产活动的需求,增强现实AR将发挥很关键作用,在智能制造过程中可用于监控流程和生产流程。如:生产任务分步指引,例如手动装配过程指导;远程专家业务支撑,例如远程维护。在这些应用中,辅助AR设施需要最大程度具备灵活性和轻便性,以便维护工作高效开展。

5.云化机器人

在智能制造生产场景中,需要机器人有自组织和协同的能力来满足柔性生产,这就带来了机器人对云化的需求。5G网络是云化机器人理想的通信网络,是机器人云化的关键。

毋庸置疑,5G技术已经成为支撑智能制造转型的关键使能技术,能将分布广泛、零散的人、机器和设备全部连接起来,构建统一的互联网络。5G技术的发展可以帮助制造企业摆脱以往无线网络技术较为混乱的应用状态,这对于推动工业互联网的实施以及智能制造的深化转型有着积极的意义。