- Python Machine Learning / Second Edition
- Sebastian Raschka Vahid Mirjalili
- 3020字
- 2025-03-30 21:19:37
Adaptive linear neurons and the convergence of learning
In this section, we will take a look at another type of single-layer neural network: ADAptive LInear NEuron (Adaline). Adaline was published by Bernard Widrow and his doctoral student Tedd Hoff, only a few years after Frank Rosenblatt's perceptron algorithm, and can be considered as an improvement on the latter. (Refer to An Adaptive "Adaline" Neuron Using Chemical "Memistors", Technical Report Number 1553-2, B. Widrow and others, Stanford Electron Labs, Stanford, CA, October 1960).
The Adaline algorithm is particularly interesting because it illustrates the key concepts of defining and minimizing continuous cost functions. This lays the groundwork for understanding more advanced machine learning algorithms for classification, such as logistic regression, support vector machines, and regression models, which we will discuss in future chapters.
The key difference between the Adaline rule (also known as the Widrow-Hoff rule) and Rosenblatt's perceptron is that the weights are updated based on a linear activation function rather than a unit step function like in the perceptron. In Adaline, this linear activation function is simply the identity function of the net input, so that:

While the linear activation function is used for learning the weights, we still use a threshold function to make the final prediction, which is similar to the unit step function that we have seen earlier. The main differences between the perceptron and Adaline algorithm are highlighted in the following figure:

The illustration shows that the Adaline algorithm compares the true class labels with the linear activation function's continuous valued output to compute the model error and update the weights. In contrast, the perceptron compares the true class labels to the predicted class labels.
Minimizing cost functions with gradient descent
One of the key ingredients of supervised machine learning algorithms is a defined objective function that is to be optimized during the learning process. This objective function is often a cost function that we want to minimize. In the case of Adaline, we can define the cost function to learn the weights as the Sum of Squared Errors (SSE) between the calculated outcome and the true class label:

The term is just added for our convenience, which will make it easier to derive the gradient, as we will see in the following paragraphs. The main advantage of this continuous linear activation function, in contrast to the unit step function, is that the cost function becomes differentiable. Another nice property of this cost function is that it is convex; thus, we can use a simple yet powerful optimization algorithm called gradient descent to find the weights that minimize our cost function to classify the samples in the Iris dataset.
As illustrated in the following figure, we can describe the main idea behind gradient descent as climbing down a hill until a local or global cost minimum is reached. In each iteration, we take a step in the opposite direction of the gradient where the step size is determined by the value of the learning rate, as well as the slope of the gradient:

Using gradient descent, we can now update the weights by taking a step in the opposite direction of the gradient of our cost function
:

Where the weight change is defined as the negative gradient multiplied by the learning rate
:

To compute the gradient of the cost function, we need to compute the partial derivative of the cost function with respect to each weight :

So that we can write the update of weight as:

Since we update all weights simultaneously, our Adaline learning rule becomes:

Although the Adaline learning rule looks identical to the perceptron rule, we should note that the with
is a real number and not an integer class label. Furthermore, the weight update is calculated based on all samples in the training set (instead of updating the weights incrementally after each sample), which is why this approach is also referred to as batch gradient descent.
Implementing Adaline in Python
Since the perceptron rule and Adaline are very similar, we will take the perceptron implementation that we defined earlier and change the fit
method so that the weights are updated by minimizing the cost function via gradient descent:
class AdalineGD(object): """ADAptive LInear NEuron classifier. Parameters ------------ eta : float Learning rate (between 0.0 and 1.0) n_iter : int Passes over the training dataset. random_state : int Random number generator seed for random weight initialization. Attributes ----------- w_ : 1d-array Weights after fitting. cost_ : list Sum-of-squares cost function value in each epoch. """ def __init__(self, eta=0.01, n_iter=50, random_state=1): self.eta = eta self.n_iter = n_iter self.random_state = random_state def fit(self, X, y): """ Fit training data. Parameters ---------- X : {array-like}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ rgen = np.random.RandomState(self.random_state) self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1]) self.cost_ = [] for i in range(self.n_iter): net_input = self.net_input(X) output = self.activation(net_input) errors = (y - output) self.w_[1:] += self.eta * X.T.dot(errors) self.w_[0] += self.eta * errors.sum() cost = (errors**2).sum() / 2.0 self.cost_.append(cost) return self def net_input(self, X): """Calculate net input""" return np.dot(X, self.w_[1:]) + self.w_[0] def activation(self, X): """Compute linear activation""" return X def predict(self, X): """Return class label after unit step""" return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)
Instead of updating the weights after evaluating each individual training sample, as in the perceptron, we calculate the gradient based on the whole training dataset via self.eta * errors.sum()
for the bias unit (zero-weight) and via self.eta * X.T.dot(errors)
for the weights 1 to m where X.T.dot(errors)
is a matrix-vector multiplication between our feature matrix and the error vector.
Please note that the activation
method has no effect in the code since it is simply an identity function. Here, we added the activation function (computed via the activation
method) to illustrate how information flows through a single layer neural network: features from the input data, net input, activation, and output. In the next chapter, we will learn about a logistic regression classifier that uses a non-identity, nonlinear activation function. We will see that a logistic regression model is closely related to Adaline with the only difference being its activation and cost function.
Now, similar to the previous perceptron implementation, we collect the cost values in a self.cost_
list to check whether the algorithm converged after training.
Note
Performing a matrix-vector multiplication is similar to calculating a vector dot-product where each row in the matrix is treated as a single row vector. This vectorized approach represents a more compact notation and results in a more efficient computation using NumPy. For example:

In practice, it often requires some experimentation to find a good learning rate for optimal convergence. So, let's choose two different learning rates,
and
, to start with and plot the cost functions versus the number of epochs to see how well the Adaline implementation learns from the training data.
Note
The learning rate (
eta
), as well as the number of epochs (n_iter)
, are the so-called hyperparameters of the perceptron and Adaline learning algorithms. In Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, we will take a look at different techniques to automatically find the values of different hyperparameters that yield optimal performance of the classification model.
Let us now plot the cost against the number of epochs for the two different learning rates:
>>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) >>> ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y) >>> ax[0].plot(range(1, len(ada1.cost_) + 1), ... np.log10(ada1.cost_), marker='o') >>> ax[0].set_xlabel('Epochs') >>> ax[0].set_ylabel('log(Sum-squared-error)') >>> ax[0].set_title('Adaline - Learning rate 0.01') >>> ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y) >>> ax[1].plot(range(1, len(ada2.cost_) + 1), ... ada2.cost_, marker='o') >>> ax[1].set_xlabel('Epochs') >>> ax[1].set_ylabel('Sum-squared-error') >>> ax[1].set_title('Adaline - Learning rate 0.0001') >>> plt.show()
As we can see in the resulting cost-function plots, we encountered two different types of problem. The left chart shows what could happen if we choose a learning rate that is too large. Instead of minimizing the cost function, the error becomes larger in every epoch, because we overshoot the global minimum. On the other hand, we can see that the cost decreases on the right plot, but the chosen learning rate is so small that the algorithm would require a very large number of epochs to converge to the global cost minimum:

The following figure illustrates what might happen if we change the value of a particular weight parameter to minimize the cost function . The left subfigure illustrates the case of a well-chosen learning rate, where the cost decreases gradually, moving in the direction of the global minimum. The subfigure on the right, however, illustrates what happens if we choose a learning rate that is too large—we overshoot the global minimum:

Improving gradient descent through feature scaling
Many machine learning algorithms that we will encounter throughout this book require some sort of feature scaling for optimal performance, which we will discuss in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn and Chapter 4, Building Good Training Sets – Data Preprocessing.
Gradient descent is one of the many algorithms that benefit from feature scaling. In this section, we will use a feature scaling method called standardization, which gives our data the property of a standard normal distribution, which helps gradient descent learning to converge more quickly. Standardization shifts the mean of each feature so that it is centered at zero and each feature has a standard deviation of 1. For instance, to standardize the jth feature, we can simply subtract the sample mean from every training sample and divide it by its standard deviation
:

Here, is a vector consisting of the jth feature values of all training samples n, and this standardization technique is applied to each feature j in our dataset.
One of the reasons why standardization helps with gradient descent learning is that the optimizer has to go through fewer steps to find a good or optimal solution (the global cost minimum), as illustrated in the following figure, where the subfigures represent the cost surface as a function of two model weights in a two-dimensional classification problem:

Standardization can easily be achieved using the built-in NumPy methods mean
and std
:
>>> X_std = np.copy(X) >>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std() >>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()
After standardization, we will train Adaline again and see that it now converges after a small number of epochs using a learning rate :
>>> ada = AdalineGD(n_iter=15, eta=0.01) >>> ada.fit(X_std, y) >>> plot_decision_regions(X_std, y, classifier=ada) >>> plt.title('Adaline - Gradient Descent') >>> plt.xlabel('sepal length [standardized]') >>> plt.ylabel('petal length [standardized]') >>> plt.legend(loc='upper left') >>> plt.tight_layout() >>> plt.show() >>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o') >>> plt.xlabel('Epochs') >>> plt.ylabel('Sum-squared-error') >>> plt.show()
After executing this code, we should see a figure of the decision regions as well as a plot of the declining cost, as shown in the following figure:

As we can see in the plots, Adaline has now converged after training on the standardized features using a learning rate . However, note that the SSE remains non-zero even though all samples were classified correctly.
Large-scale machine learning and stochastic gradient descent
In the previous section, we learned how to minimize a cost function by taking a step in the opposite direction of a cost gradient that is calculated from the whole training set; this is why this approach is sometimes also referred to as batch gradient descent. Now imagine we have a very large dataset with millions of data points, which is not uncommon in many machine learning applications. Running batch gradient descent can be computationally quite costly in such scenarios since we need to reevaluate the whole training dataset each time we take one step towards the global minimum.
A popular alternative to the batch gradient descent algorithm is stochastic gradient descent, sometimes also called iterative or online gradient descent. Instead of updating the weights based on the sum of the accumulated errors over all samples :

We update the weights incrementally for each training sample:

Although stochastic gradient descent can be considered as an approximation of gradient descent, it typically reaches convergence much faster because of the more frequent weight updates. Since each gradient is calculated based on a single training example, the error surface is noisier than in gradient descent, which can also have the advantage that stochastic gradient descent can escape shallow local minima more readily if we are working with nonlinear cost functions, as we will see later in Chapter 12, Implementing a Multilayer Artificial Neural Network from Scratch. To obtain satisfying results via stochastic gradient descent, it is important to present it training data in a random order; also, we want to shuffle the training set for every epoch to prevent cycles.
Note
In stochastic gradient descent implementations, the fixed learning rate is often replaced by an adaptive learning rate that decreases over time, for example:

Where and
are constants. We shall note that stochastic gradient descent does not reach the global minimum, but an area very close to it. And using an adaptive learning rate, we can achieve further annealing to the cost minimum.
Another advantage of stochastic gradient descent is that we can use it for online learning. In online learning, our model is trained on the fly as new training data arrives. This is especially useful if we are accumulating large amounts of data, for example, customer data in web applications. Using online learning, the system can immediately adapt to changes and the training data can be discarded after updating the model if storage space is an issue.
Note
A compromise between batch gradient descent and stochastic gradient descent is so-called mini-batch learning. Mini-batch learning can be understood as applying batch gradient descent to smaller subsets of the training data, for example, 32 samples at a time. The advantage over batch gradient descent is that convergence is reached faster via mini-batches because of the more frequent weight updates. Furthermore, mini-batch learning allows us to replace the for
loop over the training samples in stochastic gradient descent with vectorized operations, which can further improve the computational efficiency of our learning algorithm.
Since we already implemented the Adaline learning rule using gradient descent, we only need to make a few adjustments to modify the learning algorithm to update the weights via stochastic gradient descent. Inside the fit
method, we will now update the weights after each training sample. Furthermore, we will implement an additional partial_fit
method, which does not reinitialize the weights, for online learning. In order to check whether our algorithm converged after training, we will calculate the cost as the average cost of the training samples in each epoch. Furthermore, we will add an option to shuffle the training data before each epoch to avoid repetitive cycles when we are optimizing the cost function; via the random_state
parameter, we allow the specification of a random seed for reproducibility:
class AdalineSGD(object): """ADAptive LInear NEuron classifier. Parameters ------------ eta : float Learning rate (between 0.0 and 1.0) n_iter : int Passes over the training dataset. shuffle : bool (default: True) Shuffles training data every epoch if True to prevent cycles. random_state : int Random number generator seed for random weight initialization. Attributes ----------- w_ : 1d-array Weights after fitting. cost_ : list Sum-of-squares cost function value averaged over all training samples in each epoch. """ def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None): self.eta = eta self.n_iter = n_iter self.w_initialized = False self.shuffle = shuffle self.random_state = random_state def fit(self, X, y): """ Fit training data. Parameters ---------- X : {array-like}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ self._initialize_weights(X.shape[1]) self.cost_ = [] for i in range(self.n_iter): if self.shuffle: X, y = self._shuffle(X, y) cost = [] for xi, target in zip(X, y): cost.append(self._update_weights(xi, target)) avg_cost = sum(cost) / len(y) self.cost_.append(avg_cost) return self def partial_fit(self, X, y): """Fit training data without reinitializing the weights""" if not self.w_initialized: self._initialize_weights(X.shape[1]) if y.ravel().shape[0] > 1: for xi, target in zip(X, y): self._update_weights(xi, target) else: self._update_weights(X, y) return self def _shuffle(self, X, y): """Shuffle training data""" r = self.rgen.permutation(len(y)) return X[r], y[r] def _initialize_weights(self, m): """Initialize weights to small random numbers""" self.rgen = np.random.RandomState(self.random_state) self.w_ = self.rgen.normal(loc=0.0, scale=0.01, size=1 + m) self.w_initialized = True def _update_weights(self, xi, target): """Apply Adaline learning rule to update the weights""" output = self.activation(self.net_input(xi)) error = (target - output) self.w_[1:] += self.eta * xi.dot(error) self.w_[0] += self.eta * error cost = 0.5 * error**2 return cost def net_input(self, X): """Calculate net input""" return np.dot(X, self.w_[1:]) + self.w_[0] def activation(self, X): """Compute linear activation""" return X def predict(self, X): """Return class label after unit step""" return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)
The _shuffle
method that we are now using in the AdalineSGD
classifier works as follows: via the permutation
function in np.random
, we generate a random sequence of unique numbers in the range 0 to 100. Those numbers can then be used as indices to shuffle our feature matrix and class label vector.
We can then use the fit
method to train the AdalineSGD
classifier and use our plot_decision_regions
to plot our training results:
>>> ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1) >>> ada.fit(X_std, y) >>> plot_decision_regions(X_std, y, classifier=ada) >>> plt.title('Adaline - Stochastic Gradient Descent') >>> plt.xlabel('sepal length [standardized]') >>> plt.ylabel('petal length [standardized]') >>> plt.legend(loc='upper left') >>> plt.show() >>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o') >>> plt.xlabel('Epochs') >>> plt.ylabel('Average Cost') >>> plt.show()
The two plots that we obtain from executing the preceding code example are shown in the following figure:

As we can see, the average cost goes down pretty quickly, and the final decision boundary after 15 epochs looks similar to the batch gradient descent Adaline. If we want to update our model, for example, in an online learning scenario with streaming data, we could simply call the partial_fit
method on individual samples—for instance ada.partial_fit(X_std[0, :], y[0])
.