第3章 DS证据理论基本概率赋值函数获取

3.1 引言

证据理论可处理由不知道所引起的不确定性。它采用信任函数而不是概率进行度量,通过对一些事件的概率加以约束以建立信任函数而不必说明精确的难以获得的概率,当约束限制为严格的概率时,它就退化为概率论。它的最大特点是对不确定信息的描述采用“区间估计”,而不是“点估计”,在区分不知道与不精确方面以及精确反映证据收集方面显示出很大的灵活性。

证据理论通过获取的关于目标的信息(即证据),推导计算出目标的各属性结论的可信度区间,并进而判定出目标属性。在目标属性识别推理的过程中常用的算法有Bayes方法。若采用Bayes方法,则需要一些先验概率,这是很麻烦甚至是不可能的事情。若采用DS证据理论,则由于证据理论采用的是信任函数而不是概率进行度量,因此巧妙地解决了这一问题。

但是,应用DS证据理论时,基本概率赋值函数的获取是一个与应用密切相关的课题。基本概率赋值函数是证据理论中不确定性的载体,得到证据后,如何确定它对各个命题的支持,是DS证据理论应用于信息融合的第一个关键问题。在目标识别信息融合系统的应用中,多由专家知识确定BPA,带有一定的主观因素,往往会影响正确识别结论。

本章研究DS证据理论中基本概率赋值函数的构造方法,在分析现有BPA赋值方法的基础上,提出了新的BPA函数构造方法。