本章参考文献

[1] Yan H S, Xue C G. Decision-making in self-reconfiguration of a knowledgeable manufacturing system [J]. International Journal of Production Research, 2007, 45(12): 2735-2758.

[2] Yao DD. Stochastic modeling and analysis of manufacturing systems [M]. Springer Science & Business Media, 2012.

[3] Newell C. Applications of queueing theory [M]. Springer Science & Business Media, 2013.

[4] Bhat, UN. An introduction to queueing theory: modeling and analysis in applications [M]. Birkhäuser, 2015.

[5] 王炳刚. 混流加工装配系统运行优化[M]. 西安:西北工业大学出版社,2017.

[6] 潘尔顺. 上海汽车工业教育基金会组编. 生产计划与控制[M]. 第2版. 上海:上海交通大学出版社,2015.

[7] 吴爱华. 生产计划与控制[M]. 北京:机械工业出版社,2013.

[8] Ghezavati VR, Saidi-Mehrabad M, et al An efficient hybrid self-learning method for stochastic cellular manufacturing problem: A queuing-based analysis [J]. Expert Systems with Applications, 2011, 38(3): 1326-1335.

[9] Schelasin R. Using static capacity modeling and queuing theory equations to predict factory cycle time performance in semiconductor manufacturing [C]. Proceedings of the Winter Simulation Conference. Winter Simulation Conference, 2011: 2045-2054.

[10] Sarkar A, Mukhopadhyay AR, Ghosh SK. Productivity improvement by reduction of idle time through application of queuing theory [J]. Opsearch, 2015, 52(2): 195-211.

[11] Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.. Linear programming and network flows [M]. John Wiley & Sons, 2011.

[12] Confessore, G, Fabiano M, Liotta G. A network flow based heuristic approach for optimising AGV movements [J]. Journal of Intelligent Manufacturing, 2013, 24(2): 405-419.

[13] Nagurney A, Nagurney LS. Medical nuclear supply chain design: A tractable network model and computational approach [J]. International Journal of Production Economics, 2012, 140(2): 865-874.

[14] 王楠. 基于实时状态信息的混流装配生产优化与仿真技术研究[D]. 武汉:华中科技大学,2012.

[15] 王德刚. 速达公司汽车混流装配线改善策略研究[D]. 武汉:华中科技大学,2012.

[16] 王宝曦. 混流装配车间装配线计划与物流优化研究[D]. 武汉:华中科技大学,2015.

[17] Zhao C. A quality-relevant sequential phase partition approach for regression modeling and quality prediction analysis in manufacturing processes [J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 983-991.

[18] Gomes CF, Yasin MM, Lisboa JV. Performance measurement practices in manufacturing firms revisited [J]. International Journal of Operations & Production Management, 2011, 31(1): 5-30.

[19] Xiong J, Zhang G, Hu J, et al. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis [J]. Journal of Intelligent Manufacturing, 2014, 25(1): 157-163.