1.4 总结

本章提出了一个可以根据真实照片自动捏脸的工具包Face Avatar。它可以自动提取真实照片中的人脸特征,如五官形状、各部位颜色等,并根据这些信息自动调整游戏中的默认人脸,从而实现“千人千面”的效果。Face Avatar可以方便地适用于不同类型或风格的游戏,用户可以根据需求进行快速的轻量级系统搭建与部署。此外,Face Avatar为用户提供了较大的自由度与扩展空间,用户可以根据实际需求对相应的模块进行自定义设计。


[1] JOURABLOO A, LIU X. Large-pose face alignment via CNN-based dense 3D model fitting[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA: IEEE, 2016: 4188-4196.

[2] BHAGAVATULA C,ZHU C, LUU K, et al. Faster than real-time facial alignment: A 3d spatial transformer network approach in unconstrained poses[C]//Proceedings of the IEEE International Conference on Computer Vision.Honolulu, HI, USA: IEEE, 2017:3980-3989.

[3] BULAT A, TZIMIROPOULOS G.How far are we from solving the 2D&3D face alignment problem?(and a dataset of 230,000 3D facial landmarks)[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice, Italy: IEEE, 2017: 1021-1030.

[4] JACKSON A S, BULAT A, ARGYRIOU V, et al. Large pose 3D face reconstruction from a single image via direct volumetric CNN regression[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 1031-1039.

[5] FENG Y, WU F, SHAO X, et al. Joint 3D face reconstruction and dense alignment with position map regression network[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018:534-551.

[6] JACOBSON A.Part II: Automatic Skinning via Constrained Energy Optimization[C]//SIGGRAPH Course, Vancouver, Canada, 2014: 1-28.

[7] JACOBSON A, TOSUN E, SORKINE O, et al. Mixed finite elements for variational surface modeling[C]//Computer graphics forum.Wiley Online Library, 2010: 1565-1574.

[8] JACOBSON A, PANOZZO D, SCHÜLLER C, et al. libigl:A simple C++ geometry processing library[Z](2016).

[9] SUMNER R W,POPOVIĆJ. Deformation transfer for triangle meshes[J]. ACM Transactions on graphics (TOG), 2004, 23(3): 399-405.

[10] TAN M, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning(ICML). Long Beach, CA, USA: ACM, 2019: 6105-6114.

[11] XIE Q, LUONG M-T, HOVY E, et al. Self-training with noisy student improves imagenet classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 10687-10698.

[12] TOUVRON H,VEDALDI A, DOUZE M, et al. Fixing the train-test resolution discrepancy[OL].arXiv preprint arXiv:1906.06423, 2019.

[13] TOUVRON H,VEDALDI A, DOUZE M, et al. Fixing the train-test resolution discrepancy: FixEfficientNet[OL].arXiv preprint arXiv:2003.08237, 2020.

[14] SANDLER M, HOWARD A,ZHU M, et al. MobileNetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA: IEEE, 2018: 4510-4520.