- 大数据驱动的机械装备智能运维理论及应用
- 雷亚国 杨彬
- 1349字
- 2022-05-06 19:43:42
参考文献
[1] 大数据文摘.航空遇见大数据[EB/OL].https://cloud.tencent.com/developer/article/1131052,2018-05-21.
[2] 夏妍娜,王羽.大数据在德国汽车制造商宝马集团中的应用[J].智慧工厂,2017,2:81-84.
[3] Evans PC,Annunziata M.Industrial Internet:Pushing the boundaries of minds and machines[J].Scirepkanazawa Univ,2012,1:1-23.
[4] 李心萍.用大数据挖掘大价值[N].人民日报,2016-11-30(2).
[5] 陈雪峰,訾艳阳.智能运维与健康管理[M].北京:机械工业出版社,2018.
[6] 维克托·迈尔·舍恩伯格.大数据时代:生活、工作与思维的大变革[M].盛杨燕,周涛.译.浙江:浙江人民出版社,2012.
[7] 雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(5):94-104.
[8] JARDINE A K S,TSANG A H C.Maintenance,Replacement,and Reliability:Theory and Applications[M].CRC press,2013.
[9] PUSEY H C,HOWARD P L.An historical view of mechanical failure prevention technology [J].Sound and Vibration,2008,42(5):10-19.
[10]李杰.工业大数据[M].邱伯华,等译.北京:机械工业出版社,2015.
[11] Center for Interlligent Maintenance Systems[EB/OL].http://www.imscenter.net/IMS.
[12]中国民航网.罗尔斯·罗伊斯推出智能发动机愿景[EB/OL].http://www.caacnews.com.cn/1/88/201802/t20180208_1240605.html,2018-02-08.
[13] Centre for Maintenance Optimization and Reliability Engineering[EB/OL].https://cmore.mie.utoronto.ca/.
[14] PHM Society.PHM Data Challenge[EB/OL].https://www.phmsociety.org/events/conference/phm/15/data-challenge.
[15]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2016—2020年)[EB/OL].http://www.gov.cn/jrzg/2006-02/09/content_183787.htm,2006-02-09.
[16]国家自然科学基金委员会工程与材料学部.机械工程学科发展战略报告(2011~2020)[M].北京:科学出版社,2010.
[17]中国工程院“制造强国战略研究”项目组.中国智能制造发展战略研究[J].中国工程科学,2018,20(4):1-8.
[18]中国信息通信研究院.首届中国工业大数据创新竞赛在京正式启动[EB/OL].http://www.caict.ac.cn/xwdt/ynxw/201804/t20180426_157350.htm,2017-07-03.
[19]孟小峰,慈祥.大数据管理:概念,技术与挑战[J].计算机研究与发展,2013,50(1):146-169.
[20]李学龙,龚海刚.大数据系统综述[J].中国科学:信息科学,2015,45(1):1-44.
[21]何正嘉,陈进,王太勇,褚福磊.机械故障诊断理论及应用[M].北京:高等教育出版社,2010.
[22]林京,赵明.变转速下机械设备动态信号分析方法的回顾与展望[J].中国科学:技术科学,2015,45(7):669-686.
[23] FENG Z,ZHOU Y,ZUO M J,et al.Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis:A review with examples[J].Measurement,2017,103:106-132.
[24]何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
[25]褚福磊,彭志科,冯志鹏,李志农.机械故障诊断中的现代信号处理方法[M].北京:科学出版社,2009.
[26]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007.
[27] LEI Y,YANG B,JIANG X,et al.Applications of machine learning to machine fault diagnosis:A review and roadmap[J].Mechanical Systems and Signal Processing,2020,138:106587.
[28]周志华.机器学习[M].北京:清华大学出版社,2016.
[29]雷亚国,何正嘉.混合智能故障诊断与预示技术的应用进展[J].振动与冲击,2011,30(9):129-135.
[30] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[31] KHAN S,YAIRI T.A review on the application of deep learning in system health management[J].Mechanical Systems and Signal Processing,2018,107:241-265.
[32] LEI Y,LI N,GUO L,et al.Machinery health prognostics:A systematic review from data acquisition to RUL prediction[J].Mechanical Systems and Signal Processing,2018,104:799-834.
[33]张小丽,陈雪峰,李兵,等.机械重大装备寿命预测综述[J].机械工程学报,2011,47(11):100-116.
[34]涂善东,轩福贞,王卫泽.高温蠕变与断裂评价的若干关键问题[J].金属学报,2009,45(7):781-787.
[35] SANTECCHIA E,HAMOUDA A M S,MUSHARAVATI F,et al.A review on fatigue life prediction methods for metals[J].Advances in Materials Science and Engineering,2016:9573524.
[36] LEE J,WU F,ZHAO W,et al.Prognostics and health management design for rotary machinery systems-Reviews,methodology and applications[J].Mechanical Systems and Signal Processing,2014,42(1-2):314-334.
[37] KAN M S,TAN A C C,MATHEW J.A review on prognostic techniques for non-stationary and non-linear rotating systems[J].Mechanical Systems and Signal Processing,2015,62-63:1-20.
[38] WANG Y,ZHAO Y,ADDEPALLI S.Remaining useful life prediction using deep learning approaches:A review[J].Procedia Manufacturing,2020,49:81-88.
[39]裴洪,胡昌华,司小胜,等.基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报,2019,55(8):1-13.
[40] SI X,WANG W,HU C,et al.Remaining useful life estimation-a review on the statistical data driven approaches[J].European Journal of Operational Research,2011,213(1):1-14.
[41] ZHANG Z,SI X,HU C,et al.Degradation data analysis and remaining useful life estimation:A review on Wiener-process-based methods[J].European Journal of Operational Research,2018,271(3):775-796.
[42]曾声奎,MICHAEL G.PECHT,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632.
[43]莫固良,汪慧云,李兴旺,等.飞机健康监测与预测系统的发展及展望[J].振动、测试与诊断,2013,33(6):925-930+1089.
[44]罗荣蒸,孙波,张雷,等.航天器预测与健康管理技术研究[J].航天器工程,2013,22(4):95-102.
[45] MARK S,JEFF S,LEE B.The NASA Integrated vehicle health management technology experiment for X-37[C]//Conference on Component and Systems Diagnostics,Prognostics,and Health Management in Orlando,USA,April 3-4,2002:49-60.