- 复杂电能质量智能分析技术
- 林琳 黄南天
- 9334字
- 2022-05-10 17:56:16
1.2 国内外研究现状
1.2.1 电能质量数据压缩
电能质量数据是分析电网电能质量并进行针对性治理的重要依据。由于电能质量数据采集与记录设备存储容量有限,传统电网通过录波器等设备记录电能质量数据时,其记录范围仅包含电能质量事件发生过程中及相邻较短时间内的电能质量数据,而且电能质量事件发生前后相邻时间的数据也采用降采样率方法记录,记录数据量有限且难以支持高精度电能质量分析的要求。因此,需要通过数据压缩方法处理数据,用有限的存储设备与网络资源实现电能质量数据的高效存储与传输。
现有的电能质量数据压缩方法分为无损压缩与有损压缩两类。应用于电能质量数据压缩的无损压缩方法主要包括自适应Huffman编码[9]、动态Huffman编码[10]、改进的动态Huffman编码[11]、结合Huffman编码和R-L游程编码[12]、算术编码[13]、能量阈值法[14]等。无损压缩方法保存了信号的完整原始信息,能够支持电能质量信号分析的各种要求。但是,由于实际信号采集过程中存在噪声干扰等问题,无损压缩方法的压缩比较低,压缩效果并不理想,不能够完全满足实际工作中对于电能质量数据压缩的高压缩比要求。同时,无损压缩方法未考虑电能质量信号自身特点,电能质量信号在频率空间中相对集中,如暂态扰动中的电压暂降、电压暂升、电压中断等暂态信号,其频率范围主要集中于基频附近,后期分析数据时,也主要考虑基频附近的频率范围的信号变化特点。所以,对于电能质量信号的压缩可以考虑通过有损压损,在控制信号的失真程度并达到理想压缩效果的同时,保留电能质量信号的有效信息,以支持后期的电能质量数据分析。近年来电能质量信号压缩方法的研究主要集中于以小波方法为代表的有损压缩方法。
从本质上看,电能质量信号是较典型的宽频信号,各种暂态分量分布于频域和时域的不同范围,小波变换方法具有良好的时-频聚焦能力,可以有效地提取各种暂态信号时-频成分,非常适用于电能质量数据的压缩。采用小波变换对电能质量信号进行压缩时,首先对原始信号进行i层小波变换,每层小波系数的总长度与原始的输入信号长度相同,但是其中数据占比较小的平滑信号描述了原始电能质量信号的主要特征,而数据占比较大的细节信号只保留了信号的局部特征。通过对原始信号的小波系数进行阈值处理,既可以达到有损数据压缩的目的,压缩后的信号仍然可以很好地支持暂态识别、定位等分析的要求。同时,通过阈值处理,过滤了高频部分噪声信号的干扰,也起到了很好的降噪效果。采用基于小波变换方法的电能质量数据压缩方法,各种小波均可以实现电能质量信号的压缩与重构,但是不同的小波基压缩效果不同。此外,压缩比也不宜作为选择小波压缩算法的唯一指标,需要在获得较高压缩比的同时,兼顾小波基正则性、紧支撑性、能量集中性、对称性、失真率、运算量等要求,综合考虑后选择适当的小波基与小波分解层数。
参考文献[15]采用db4小波对电能质量信号进行离散正交小波变换,在获得小波系数后通过设置阈值,使低于阈值的大量小波系数为0,而后仅保留非0的小波系数,从而达到了电能质量数据压缩的要求,获得了较好的压缩效果。
参考文献[16]设计了一种基于软阈值的离散小波变换去噪、压缩方法。通过Brownian Bridge随机过程方法实时计算阈值,该方法能够根据实际工作环境中的具体噪声水平自适应地确定阈值,在一定程度上避免硬阈值法保存原始信号信息与过滤环境噪声之间的矛盾,获得了较好的降噪效果。但是,噪声强度的估计与软阈值的实时计算增加了计算量,对硬件提出了更高的要求。
参考文献[17]通过比较Mallat小波与双正交样条小波(Biorthogonal Spline Wavelet,简写为bior Nr.Nd,其中,Nr、Nd分别为重构和分解消失矩阶数),在综合考虑数据压缩比、信号重构的失真率、故障时刻定位误差率以及计算时间等因素的基础之上,确定bior 3.1双正交小波作为电能质量数据压缩方法,取得了较好的压缩效果与实时性。
参考文献[18]将二维离散小波变换与能量阈值法相结合应用于电能质量数据压缩。通过二维db4小波将电能质量信号中的信号高频成分与噪声分解到不同的方向上,且将能量保留在很少的小波系数中。之后,采用能量均值修正系数设置能量阈值,通过能量阈值,将99%以上的信号能量保存在压缩后的信号中。通过计算信噪比(SNR,单位为dB)、压缩比(CR)、均方误差百分值(MSE)、能量比4个指标,验证了其方法的有效性。
参考文献[19]采用第二代小波变换算法——提升算法处理电能质量信号。同时,通过小波分解层数对应频率范围与工频关系确定最优小波分解层数,有效地降低了运算量。
参考文献[20-22]等将二维提升小波用于电能质量数据压缩,通过有限的简单提升步骤实现了二维小波变换。通过提升滤波算法对二维矩阵的行、列分别进行一维变换,对变换后的二维矩阵数据进行抽取,分别生成近似分量、水平方向细节分量、垂直方向细节分量、对角线方向细节分量4个子带矩阵,并重复以上过程,直至达到预期的小波分解层数。其运算量接近一维小波变换的两倍,且压缩比高于一维小波变换。同时,采用二维小波变换压缩信号其压缩比受到信号原始特征影响,当信号具有周期性时,二维小波变换在减少周期信号冗余方面优于一维小波变换,但是当信号本身周期性较弱时,二维小波变换相较于一维小波变换的压缩比优势明显降低,且运算量高于一维小波变换。因而,实际工作中应该根据具体信号特征选择一维或二维小波变换压缩方法。
参考文献[23]将多小波应用于电能质量数据压缩,与传统小波变换方法比较,采用多小波变换方法分解与重构电能质量信号,其信号的重构误差精度远远高于传统小波变换方法,且具有更高的能量集中率。
除单独使用小波变换方法压缩电能质量信号之外,小波变换方法与人工神经网络相结合也可以起到良好的电能质量信号压缩效果[24]。在采用样条小波基对原始信号进行二层分解的基础之上,通过阈值减少小波系数,并将减少后的小波系数作为输入数据送入径向基神经网络中进行进一步压缩。可以在小波变换压缩基础上得到进一步压缩,压缩比高于单一使用小波变换方法,但是该方法运算量较大,对于实时性要求较高的应用环境需要更高的硬件系统支持。
综上所述,在电能质量信号压缩领域,能够根据信号频域特点进行压缩的小波变换方法适用于电能质量信号的压缩与降噪,但是小波变换方法的运算量较大,算法实现硬件要求较高。随着智能电网建设的不断深入,需要进行电能质量数据监控的环节已经逐渐由发电、输电环节向配电环节扩展[25,26]。为满足电网整体的智能化需求,并且兼顾安全、经济、电能质量三大原则[27],设计算法时,不仅仅要考虑到算法的压缩比等指标,同时也要考虑到算法的复杂程度,包括时间复杂度、空间复杂度等问题,尽可能设计简单高效的压缩方法,从而控制电能质量数据采集与压缩设备的成本,促进设备的普及,并在此基础上提高电网整体的智能化水平。另一方面,采用小波变换方法设计电能质量数据压缩方法时,采用不同的小波基或阈值,对压缩效果影响较大,目前尚没有确定选择小波基与小波阈值的统一方法。
1.2.2 电能质量扰动识别
随着各种冲击性负载接入以及大量分布式电源并网,电力系统中的电能质量扰动信号呈现出种类复杂、持续时间短等特点[28,29]。常见的扰动类型包括电压暂降、电压暂升、电压中断以及暂态振荡等。对于这些扰动,通常提取其电压幅值、起止时间等特征进行有效区分。在实际工作中,以上扰动通常和电压闪变、谐波等扰动放在一起进行区分[30]。此外,目前电能质量扰动信号已经向着复杂、复合扰动方向发展,即不同扰动类型同时叠加发生。如振荡含暂降、振荡含暂升等复合扰动信号的出现,给电能质量扰动信号识别带来了新的困难。
电能质量扰动信号识别通常分为特征提取、特征选择和模式识别3个步骤[31-33]:特征提取环节中信号处理效果的好坏将直接影响所提取特征的有效性,信号处理方法的时间、空间复杂度也对特征提取效率和信息存储造成影响;有效的特征选择可以去除原始特征集合中的冗余特征,简化分类器结构,提高扰动信号的分类效果;在模式识别环节建立准确、高效的分类器是电能质量扰动信号识别过程最重要的环节,分类器的性能将直接影响最终的扰动识别结果。
1.电能质量扰动信号特征提取
在对电能质量信号进行时-频处理的基础上可以对扰动信号进行特征提取。在现有电能质量扰动识别的相关研究中,所采用的各种时-频分析(Time-Frequency Analysis,TFA)方法对扰动信号具有较好的时、频分析效果,这为特征提取工作打下了良好的基础。现有研究中常用的TFA方法包括有傅里叶变换(Fourier Transform,FT)[34]、希尔伯特-黄变换(Hilbert-Huang Transform,HHT)[35]、短时傅里叶变换(Short-time Fourier Transform,STFT)[36,37]、小波变换(Wavelet Transform,WT)[38,39]以及S变换(S-Transform,ST)[40-42]及其改进形式的快速S变换(Fast S-Transform,FST)[43,44]等。通过现有研究分析发现,以上各种信号处理方法在对信号进行有效分析的同时,也存在各种不足。下面通过分析各方法性能的优劣进一步了解各方法的特点。
参考文献[36]使用的STFT方法对扰动信号的时-频分辨具有较好效果,然而,由于该方法窗函数的相关特性与时间和频率无相关联系,因此该方法的时-频分辨率较为单一。STFT方法的这种缺点制约了其在不同频率范围内电能质量扰动分析的应用。相较于STFT方法,参考文献[38]使用WT方法具有更好的时-频分析特性,对于较微弱或者不平稳的扰动信号,WT方法的分析能力更强。由于WT方法的函数窗的形状是可以改变的,因此,在算法应用过程中可以通过调节窗口的形状实现算法的时-频分辨率的有效调整。由于WT方法的分析特性满足电能质量扰动信号的畸变分布特点,因此该方法在电能质量检测与分析领域具有较为广泛的应用。然而,WT方法在使用过程中需要设置小波基的类型和信号分解的层数,这种复杂的参数设置需求制约了算法的实际应用。参考文献[40]使用的ST方法已经广泛应用于电能质量识别领域并且取得了良好的效果。相较于其他方法,ST在抗噪能力和时-频分析效果方面均具有更好的表现。然而,ST的运算复杂度较高,信号分析时间较长,是制约其在实际工程中应用的重要原因,无法满足现有海量、高采样率电能质量信号的实时分析的需求。针对ST方法运算复杂度高的缺点,参考文献[43]等使用了FST方法,ST方法需要对信号所有频率点均进行加窗傅里叶变换逆变换,而FST方法只对扰动信号的主要频率点进行处理,从而实现了对ST方法频域上的压缩。在此基础上,参考文献[45]设计了一种最优多分辨率快速S变换(Optimal Multiresolution Fast S-Transform,OMFST)方法,可以自适应调整不同扰动信号识别所需最优窗宽,具有更好的扰动分析能力。相较于ST方法,以上FST方法与OMFST方法虽然可以有效降低扰动特征提取的复杂度,但是,在信号采样率过高,信号采集时间过长情况下,得到的时-频矩阵规模仍较大、空间复杂度仍然较高。因此,在现有研究基础上进一步降低时-频矩阵的空间复杂度,减小信息所需存储空间,进而减轻信息存储压力具有重要的意义。
参考文献[46]将原始时间序列形式的电能质量扰动信号转换为灰度图像,之后通过不同的图像增强技术,对灰度图像中的扰动特征进行增强,取得了一定的效果。相较于传统的信号处理方法,该方法的特征提取效率得到显著提高。该研究中,采用不同的图像特征增强方法分别对不同的电能质量扰动信号进行特征增强,然而,如何判定具体采用何种图像处理方法、采用何种特征开展模式识别均未论述,因此不能很好地应用于实际应用中。参考文献[47]与参考文献[48]针对不同的扰动类型分别使用伽马校正、边缘检测以及峰谷检测等方法,对信号灰度变换后得到的二维灰度图像进行特征增强,在此基础上提取形态学特征用于扰动分析。
2.电能质量扰动信号特征选择
初期的电能质量扰动识别的研究中通常不涉及特征选择,然而电能质量扰动信号经特征提取后可得到大量的时-频特征,过高的特征维度不仅增加了特征存储空间与计算时间,冗余特征还会降低扰动信号分类效率与准确率。因此,对原始特征集合进行特征选择,在保证分类效果的前提下降低特征向量维度具有重要意义。
所谓特征选择,就是在获得原始特征集合的基础上,通过对原始特征集合中的所有特征的不同组合的分类能力进行有效分析,在此基础上去除冗余特征,确定最优特征组合。在现有电能质量扰动识别领域中,深入分析特征选择方法的相关研究较少,因此电能质量扰动识别的特征选择目前还处于初步阶段。参考文献[49]中首先使用了统计方法对特征进行了分析,之后通过散点图的分析最终确定最优特征子集,将18维的原始特征集合确定为2维,有效降低了特征维数。该研究通过特征选择提高了特征提取效率,简化了分类器结构。参考文献[50]分别在风能系统、光伏系统以及北欧32母线测试系统三个研究背景下,采用遗传算法进行特征选择。在去除冗余特征之后,最终识别的准确率和效率得到提高。参考文献[51]分别采用了序列前向与后向搜索方法以及格拉姆-施密特正交化方法进行特征选择,实验结果显示,采用序列后向搜索方法的分析效果优于其他两种方法,可以得到较高的识别准确率。然而,以上特征选择方法的效率制约了其在实际工程中的应用。
以上特征选择方法可以归纳为两种:第一种是按照过滤式(Filter)方法,依据特征的统计结果开展,但难以分析特征组合的分类能力[52];第二种是采用封装式(Wrapper)方法,结合智能算法,根据分类器分类效果,寻找满足分类准确率要求的特征子集,但寻优效率较低。同时,特征选择方法受噪声影响较大[53]。因此,在复杂噪声环境下,且能够分析特征组合分类能力并具有良好寻优效率的特征选择方法,是本文研究的重点之一。
3.电能质量扰动信号模式识别
电能质量信号在提取原始特征集并确定最优特征子集之后,可建立有效的分类器进行电能质量扰动信号模式识别。现有研究中常用的模式识别方法包括决策树(Decision Tree,DT)[54-56]、支持向量机(Support Vector Machine,SVM)[57,58]、贝叶斯分类器(Bayesian Classification,BC)[59]、神经网络(Neural Networks,NN)[60]和极限学习机(Extreme Learning Machine,ELM)[61,62]等。以上模式识别方法在实际应用中均取得了一定的效果,同时也各自存在着不足之处。
随着电力系统中扰动源的增多,电能质量扰动类型逐渐从单一类型过渡为多种复合类型,因此多类型、复合扰动的识别难度增大。黄广斌[61]在2006年提出了ELM方法,该方法具有较好的抗噪性,且分类器构建与识别速度较快,具有较好的分类效果,但是在具体应用中容易引起过拟合。参考文献[57]使用了一种SVM识别方法,采用小波核函数精简支持向量的数目,其分类效果也可以达到满意水平,但是SVM在具体使用中需要设置的参数较多,其惩罚因子和核函数的确定将直接影响最终分类效果。此外,SVM在实际应用中也容易发生过拟合问题。相较于以上分类器,DT具有更好的扰动识别效果,参考文献[50]研究发现,在采用相同训练与测试样本集情况下,DT分类准确率优于SVM,但DT的分类阈值设定依赖于训练样本,泛化能力较差。
随着海量电能质量数据的出现,电能质量扰动类型也越来越复杂,实际应用中对电能质量扰动信号的分类准确率和分类器的稳定性要求越来越高。与单一分类器相比,集成分类器可以通过综合分析各基分类器的结果,确定最优分类准确率,分类稳定性得到提高。随机森林(Random Forest,RF)是一种优秀的集成分类算法[63],对各基分类器采用多数投票法确定最优分类准确率,相较于DT具有更好的泛化能力。此外,RF可根据各个节点训练过程中的分类效果,获得特征重要度,为最优特征子集的选取提供参考指标。集成算法中基分类器之间的差异性以及分类精度是影响算法表现的两个至关重要的因素,旋转森林(Rotation Forest,ROF)[64]作为一种兼顾基分类器间差异性与分类准确率的优秀集成分类算法,应用于多种模式识别研究领域中。ROF在每次抽取子样本前,对原始特征集合进行随机分割组合,采用特征变换策略有效地增大基分类器之间的差异性。目前在多个公共集合的分类测试中,ROF均可获得最高的识别准确率。
现有电能质量扰动识别研究分为信号特征提取、特征选择、模式识别三部分:通过对扰动信号进行有效的信号处理,可以充分分析信号的时-频特性,在此基础上提取丰富、有效的时-频特征,构建原始特征集合;特征选择环节可以对原始特征集合中的特征进行分析,去除冗余特征,从而提高特征提取效率,简化分类器结构,减少冗余特征对分类效果的影响;模式识别环节是电能质量扰动识别研究中的最后一步,也是至关重要的一步,通过建立高效、准确的分类器可以对复杂的、复合的电能质量扰动信号进行有效分类。
虽然现有文献对各环节均进行了不同程度的研究,并且取得了一定的效果,但是仍然存在着以下不足:
(1)电能质量扰动信号特征提取方面,主要存在两方面的不足:一方面,现有信号处理方法的处理效率较低,无法满足现有海量高采样率电能质量扰动的实时分析需求;另一方面,ST方法及其改进形式的FST、OMFST方法的复杂度较高,时-频矩阵规模较大,因此硬件设备的存储压力较大,制约了其在实际工程中的应用。
(2)电能质量扰动信号特征选择方面:现有特征选择方法的效率较低,且缺少对不同特征组合分类能力的有效分析。
(3)电能质量扰动信号模式识别方面:现有单一分类器的稳定性较低,难以满足复杂、复合电能质量扰动的识别需求。
1.2.3 电能质量扰动定位与参数分析
1.电能质量扰动定位
电能质量的暂态扰动检测定位指的是从连续的电能质量暂态信号中,准确地检测是否存在扰动并确定扰动发生和结束的时间点。通过分析准确的扰动发生和结束的时间点,可以通过扰动信号记录装置推断原始扰动源位置;确定扰动的持续时间对于识别扰动类型、确定暂态过程中电压畸变幅度等也具有重大意义。由于智能电网对扰动信号分析结论的准确性提出了新的要求,定位扰动方法无法精确到具体时间点,已经不能满足检测定位精度的需求。此外电力系统对暂态扰动的控制逐渐严格,持续时间极短、分析困难的电能质量暂态现象(如电压切痕、电压尖峰等)现今也需要进行相关的检测与定位研究,这对电能质量的暂态检测与定位形成了新的挑战。常用的暂态定位检测方法包括数学形态学、小波变换、差分熵等。
当电能质量信号暂态现象发生或者结束时,其信号能量在扰动起、止时间点会发生明显变化。因此采用小波对原始电能质量信号进行小波变换,之后通过不同层次上(特别是高频域)小波系数突变点定位电能质量暂态现象是现有暂态检测定位方法中最有效的一类。参考文献[65-69]即采用小波变换方法实现了电能质量暂态现象的有效定位。
电能质量信号经常受到噪声的污染,当信号信噪比较低时,原始信号的畸变起止点的能量变化经常淹没于噪声信号之中,造成扰动定位误差或者失效。因此,如何高效过滤原始信号中的噪声成分,使之能够适应小波或其他定位方法的信噪比要求,也是暂态检测定位中需要解决的重要部分。在电能质量信号滤波算法中,数学形态学方法被广泛应用于暂态检测定位前的电能质量信号滤波[70-72]。形态学最早用于研究生物领域中动植物的形状与结构特性,是数字图像处理的有效工具之一,多用于提取图像的区域特征,也可以用于图像的滤波。由于电能质量信号为一维时变信号,所以在处理电能质量信号时,多采用数学形态学方法中的一维离散灰度形态学变换,其计算基础为“膨胀”与“腐蚀”运算。“膨胀”运算相当于将曲线加长或变粗,“腐蚀”运算相当于将曲线细化或者收缩。通过膨胀与腐蚀运算,可以得到数学形态学中的“形态开”与“形态闭”运算结果,并通过形态学开、闭运算进行滤波。通过开运算可滤除信号中的正脉冲噪声,去掉含噪声电能质量信号中的毛刺和孤立点;闭运算可以滤除信号中的负脉冲噪声,填补信号曲线上的缺损部分。其滤波效果取决于使用的形态学变换方法与结构元素。相比较其他滤波方法,形态学滤波方法运算量较小,适用于实时性要求较高的扰动检测定位中信号的预处理工作。
除小波变换方法外,采样值估算法[73]、S变换[74]、差分熵[75]等方法同样被应用于暂态扰动的检测与定位。参考文献[73]采用采样值估算法定位暂态扰动,假设已知标准电能质量信号的电压与频率,则可由已知2个采样点电压幅值推断第3点标准电压幅值。通过比较第3点标准电压幅值与实测电压幅值之间的电压偏差,确定是否发生电压畸变。该方法思路简单,定位速度快,但是在设计电压偏差阈值时没有考虑到噪声的影响,且未验证不同噪声环境下该方法的有效性,其阈值定义的合理性仍然有待证明。参考文献[74]采用S变换的模矩阵幅值平方和均值定位扰动,其方法具有一定的抗噪性能,且能有效定位高频扰动,但是未验证该方法在电压幅值畸变较小和较短持续时间下的暂态扰动定位能力。参考文献[75]采用差分熵方法检测扰动,采用信息论中熵概念判断扰动发生时间,通过检测暂态信号各个时间点的信息熵变化判断是否产生波动,实现了5类暂态扰动的精确定位与检测,考虑了较多类型的暂态信号中参数对检测结果的影响,如噪声水平、电压畸变幅度等,但是其研究对象中未包含扰动时间短、电压幅值变化小的电压切痕与电压尖峰等类型的暂态信号。
综上可知,针对电能质量暂态扰动的检测与定位研究仍然存在以下问题:①检测持续时间较短,电压幅值畸变度较小的电压切痕、电压尖峰等暂态现象的难度较大,此方面的研究较少;②定位过程中,对不同暂态信号参数影响考虑还不够完善,如扰动持续时间、电压幅值畸变程度、暂态振荡的振荡衰减系数等参数的综合影响没有全盘考虑。
2.电能质量参数分析
准确检测电能质量扰动信号参数的前提是提取有效的特征。国内外学者主要从时域、频域和时-频域方面进行扰动特征的提取。时域特征提取方法是从扰动信号本身出发,根据奇异点的幅值和相位信息[76,77]提取出检测扰动参数的特征,该方法具有物理意义明确的优点,但当发生复合扰动及多频率谐波扰动时很难进行参数的检测;频域特征提取方法是将扰动信号进行傅里叶变换[78],该方法能反映谐波和闪变等稳态扰动的参数,但不能反映暂降、暂升等暂态扰动的参数;时-频特征提取方法是利用小波变换、S变换等方法进行时频分析,通过从时频分析结果中提取特征进行参数检测,其中,小波变换可以较好地检测奇异点的时频参数[79,80],但其有抗噪声能力差和需要选择小波基等缺点。S变换继承小波变换高频用小时窗、低频用大时窗的优点,时域和频域均可分解得更加细致。但S变换存在较多冗余计算,采用改进不完全S变换检测电能质量扰动参数,使用参数检测特征向量可取得较高的检测精度。
S变换后生成的时-频模矩阵具有丰富的特征信息。参考文献[81]利用改进S变换方法对电压暂降进行参数检测,通过改进S变换窗宽因子保证基频幅值曲线的平直性,由基频幅值曲线的差分向量检测暂降发生的起止时刻;参考文献[82]提出平方检测法测量电压闪变,由S变换时-频模矩阵的频域特性曲线求得闪变幅值,由模矩阵高频幅值和曲线求得闪变起止时刻;参考文献[83]利用模矩阵频率对应最大值曲线检测电力系统间谐波的频率和幅值;参考文献[84]利用不对称的Hyperbolic代替对称的高斯窗参与S变换从而获得较高的时间分辨率,通过提取各时间点时全部频率的幅值和来定位扰动起止点。
通过以上文献总结可知,电能质量扰动信号的参数主要为扰动幅度、扰动频率、扰动起止时刻。现有扰动参数检测研究仍然存在以下问题:①国内外学者较多地利用时-频特征提取方法进行扰动参数的检测,而忽略了与时域特征提取方法、频域分析方法相结合的应用;②部分文献在检测过程中,对检测方法抗噪性考虑还不够完善,应在实验过程中加入噪声影响或设置单独的噪声抑制环节。