参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[3] 邢玉雷,徐克,刘艳辉,等.石墨烯高导热机理及其强化传热研究进展[J].化学工程师,2015(05):60-66+77.

[4] Stolyarova E, Rim K T, Ryu S, et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9209-9212.

[5] Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: a review[J]. Critical Reviews in Solid State Sciences, 2010, 35(1): 52-71.

[6] Hass J, De Heer W A, Conrad E H. The growth and morphology of epitaxial multilayer graphene[J]. Journal of Physics Condensed Matter, 2008, 20(32): 323202.

[7] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[8] Novoselov K S, Morozov S V, Mohinddin T M G, et al. Electronic properties of graphene[J]. Physica Status Solidi B, 2007, 244(11): 4106-4111.

[9] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.

[10] King A, Johnson G, Engelberg D, et al. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal[J]. Science, 2008, 321(5887): 382-385.

[11] Sakhaee Pour A. Elastic properties of single-layered graphene sheet[J]. Solid State Communications, 2009, 149(1-2): 91-95.

[12] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(46): 3906-3924.

[13] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3(4): 206-209.

[14] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.

[15] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

[16] Yu C, Shi L, Yao Z, et al. Thermal conductance and thermopower of an individual single-wall carbon nanotube[J]. Nano Letters, 2005, 5(9): 1842-1846.

[17] Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.

[18] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.

[19] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.

[20] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.

[21] Chen J, Li C, Shi G. Graphene materials for electrochemical capacitors[J]. Journal of Physical Chemistry Letters, 2013, 4(8): 1244-1253.

[22] Lee J H, Lee S H, Choi C, et al. A review of thermal conductivity data, mechanisms and models for nanofluids[J]. International Journal of Micro-Nano Scale Transport, 2011, 1(4): 269-322.

[23] Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28.

[24] 姚文俊,曹炳阳.石墨烯中热波传递的分子动力学研究[J].科学通报,2014,59(25):2528-2536.

[25] Nika D L, Pokatilov E P, Balandin A A. Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches[J]. Physica Status Solidi B, 2011, 248(11): 2609-2614.

[26] Osman M A, Srivastava D. Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes[J]. Physical Review B, 2005, 72(12): p. 125413. 1-125413. 7.

[27] 宋亮.掺杂石墨烯热传导行为的研究[D].厦门:厦门大学,2012.

[28] Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975): 213-216.

[29] Benedict L X, Louie S G, Cohen M L, et al. Heat capacity of carbon nanotubes[J]. Solid State Communications, 1996, 3(100): 177-180.

[30] Wang Z, Xie R, Bui C T, et al. Thermal transport in suspended and supported few-layer graphene[J]. Nano Letters, 2011, 11(1): 113-118.

[31] Zhong W R, Zhang M P, Ai B Q, et al. Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study[J]. Applied Physics Letters, 2011, 98(11): 113107-113110.

[32] Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7): 555-558.

[33] Zhi C, Bando Y, Terao T, et al. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers[J]. Advanced Functional Materials, 2010, 19(12): 1857-1862.

[34] Chen H, Ginzburg V V, Yang J, et al. Thermal conductivity of polymer-based composites: fundamentals and applications[J]. Progress in Polymer science, 2016, 59: 41-85.

[35] Li A, Zhang C, Zhang Y F, et al. Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications[J]. Polymers, 2017, 9(12): 437-454.

[36] Chen S H, Liu Q, Gorbatikh L, et al. Does thermal percolation exist in graphene-reinforced polymer composites?A molecular dynamics answer[J]. The Journal of Physical Chemistry C, 2021, 125(1): 1018-1028.

[37] Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules, 2006, 39(16): 543-545.

[38] Yang X, Liang C, Ma T, et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 207-230.

[39] Zhang P, Zhang X, Ding X, et al. Construction of low melting point alloy/graphene three-dimensional continuous thermal conductive pathway for improving in-plane and through-plane thermal conductivity of poly(vinylidene fluoride) composites[J]. Nanotechnology, 2020, 31(47): 475709.

[40] Guo Y Q, Ruan K P, Shi X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: a review[J]. Composites Science and Technology, 2020, 193-217.

[41] Gu J W, Xie C, Li H L, et al. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites[J]. Polymer Composites, 2014, 35(6): 1087-1092.

[42] Bruggeman D. Calculation of various physics constants in heterogenous substances I dielectricity constants and conductivity of mixed bodies from isotropic substances[J]. Annals of Physics, 1935, 24(7): 636-664.

[43] Mohaddespour A, Abolghasemi H, Mostaedi M T, et al. A new model for estimation of the thermal conductivity of polymer/clay nanocomposites[J]. Journal of Applied Polymer Science, 2010, 118(2): 1042-1050.

[44] Fricke H. The Maxwell-Wagner dispersion in suspension of ellipsoids[J]. Journal of Physical Chemistry, 1953, 57(9): 934-937.

[45] Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191.

[46] Every A G, Tzou Y, Hasselman D P H, et al. The effect of particle size on the thermal conductivity of ZnS/diamond composites[J]. Acta Metallurgica et Materialia, 1992, 40(1): 123-129.

[47] Yu W, Xie H, Yin L, et al. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina[J]. International Journal of Thermal Sciences, 2015, 91: 76-82.

[48] Warren J E, Messmer J H, Tsao G T N. Thermal conductivity of two-phase materials[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 222-223.

[49] 蒋涛,邬涵,张群朝,等.聚合物基复合材料导热模型及其研究进展[J].湖北大学学报(自然科学版),2019,41(05):526-535+552.

[50] Cheng S C, Vachon R I. A technique for predicting the thermal conductivity of suspensions, emulsions and porous Materials[J]. International Journal of Heat and Mass Transfer, 1970, 13(3): 537-546.

[51] Wang Y, Rajeshwar K, Dubow J. Dependence of thermal diffusivity on organic content for Green River oil shales—extension of the modified Cheng-Vachon model to the parallel heat-flow case[J]. Journal of Applied Physics, 1980, 51(3): 1829-1830.

[52] Zhou H, Zhang S, Yang M. The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials[J]. Composites Science and Technology, 2007, 67(6): 1035-1040.

[53] Boudenne A, Ibos L, Fois M, et al. Electrical and thermal behavior of polypropylene filled with copper particles[J]. Composites Part A, 2005, 36(11): 1545-1554.

[54] Springer S G, Tsai S W. Thermal conductivity of unidirectional materials[J]. Journal of Composite Materials, 1967, 1(2): 166-173.

[55] Rayleigh J W. On the influence of obstacles arranged in rectangular order on properties of a medium[J]. Philosophical Magazine, 1892, 34(1): 481-502.

[56] Agari Y, Tanaka M, Nagai S, et al. Thermal conductivity of a polymer composite filled with mixtures of particles[J]. Journal of Applied Polymer Science, 1987, 34(4): 1429-1437.

[57] Halpin J C, Kardos J L. The Halpin-Tsai equations: a review[J]. Polymer Engineering and Science, 1976, 16(5): 344-352.

[58] Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites[J]. Journal of Applied Polymer Science, 1970, 14(6): 1449-1471.

[59] Progelhof R C, Throne J L, Ruetsch R R. Methods for predicting the thermal conductivity of composite systems: a review[J]. Polymer Engineering & Science, 1976, 16(9): 615-625.

[60] Hatta H, Taya M, Kulacki F A, et al. Thermal diffusivities of composites with various types of filler[J]. Journal of Composite Materials, 1992, 26(5): 612-625.

[61] Kim C Y, Dang T M L, Zhang Y, et al. The alignment of AlN platelets in polymer matrix and its anisotropic thermal properties[J]. Journal of Materiomics, 2019, 5(4): 679-687.