- 中国代数故事(少年读经典·第二辑)
- 许莼舫
- 1462字
- 2023-07-07 16:13:37
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer365.jpg?sign=1739218698-itrNkRsah2xjAqKg7AFLeofAi3vGVzyp-0-c42949e7fe9f316386c509dd340ef217)
在中国古代的方程算法中,所列的方程不象现今代数里那样用字母代替未知数,而是记出每一未知项的系数于一定地位,和代数里的“分离系数法”一样。解方程所用的直除法,是从一个方程累减(或累加)另一个方程,用来消去一部分未知数,和现今的加减消元法略有不同。下面举两个例题,把古代的筹算式和代数的新记法并举,读者对照一下就可以明了。
【例一】今有上禾(稻棵)3秉(一秉即一束),中禾2秉,下禾1秉,共有实(禾的果实,即稻谷)39斗,上禾2秉,中禾3秉,下禾1秉,共有实34斗。上禾1秉,中禾2乘,下禾3秉,共有实26斗,问上中下禾各一秉有实多少?答:上禾1秉有斗,中禾1秉有∠
斗,下禾1秉有
斗。(题见《九章算术》)
列上禾3秉,中禾2秉,下禾1秉,实39斗于左行。同法列得中行和右行,如(A)式(古法自右向左依次列三式,现在为便利起见,把它对调一下)。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer305.jpg?sign=1739218698-HQ6qzV5SjHIWh8fHczIBty0fDTCTvZtN-0-119180b12b5793df0a8098a793ede0bb)
以左行上禾遍乘中行,如(B)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer02.jpg?sign=1739218698-2v0wmIGnKwCOiZ6WZo1jb0ygHadH39PX-0-5a6e92d38664c8b2ad9cb4c79633f70a)
用直除法从中行累减左行,经二次而头位减尽,如(C)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer03.jpg?sign=1739218698-A7GZR14LB7Iby5lqGJDbmpSJfpIUCsJh-0-0b80bb9a9e42c30e0aa0bd436654c1a3)
仿上法以左行上禾遍乘右行,如(D)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer04.jpg?sign=1739218698-XcaUAi0uJBt3w8J1UIEdaCTXHa6abJ5R-0-aca7a4d54be673bf59dc4b854732859c)
从右行减左行一次,头位已尽,如(E)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer05.jpg?sign=1739218698-C3mfeZslYCvtF9TC6tSfvXYbnUsYYLdc-0-6bef6d65c9ca83d00f412102ebd356ab)
再以中行中禾遍乘右行,如(F)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer25.jpg?sign=1739218698-JDSz8x84wG486prfouuRJ8wNJ5QwDcgG-0-e587cf2de7dbb6e7bbc44d93616c3d82)
从右行累减中行,经四次而第二位也尽,再把右行约简,如(G)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer26.jpg?sign=1739218698-D5N3jQX6ZDz5HGoOqfOdFSturLeEOCqj-0-0fc333b94762621d1457ce3849344437)
以右行下禾遍乘中行,如(H)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer27.jpg?sign=1739218698-rtvGK7NgTL0YxSJgG2p3GBKpLkigm0KJ-0-83535630ee4776d27507a5e9316cea55)
从中行减右行一次,第三位已尽,以(G)式中行中禾来除它,如(I)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer28.jpg?sign=1739218698-dZY0KEuiEiAL7G0RjM9CQHWPSDkYnmJE-0-ce7be50279da8fb4fe14257ab8a65512)
以右行下禾遍乘左行,如(J)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer52.jpg?sign=1739218698-ywiyq7iuJRpA4ZyUzc6XoM5CfIu7lBOH-0-adcf84c3a536c6b2903ae7d4cb3136b9)
从左行减右行一次,又累减中行二次,第二、三两位都尽,以(I)式左行上禾除之,如(K)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer53.jpg?sign=1739218698-SAoem6DaN94wGIU1C5tVNxTv3i3ks8G7-0-d1a472cece8feb37c1b014a2b10ba1e1)
三行各以上数为除数,下数做被除数,除得商数就是上中下禾各一秉的斗数。
设上禾1秉的实是x斗,中禾1秉的实是y斗,下禾1秉的实是z斗,那么依题意可列三元一次方程如下:
(A)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer232.jpg?sign=1739218698-jywPWtOee35FjKpc6oYAkZwgzgiiXYXS-0-534915ccee39b9f6da9eabdee1856506)
以(A1)式首项的系数3乘(A2)式,得
(B)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer252.jpg?sign=1739218698-gefP7GfQOsWIlOkeOLiPZ49Sn4vymDQM-0-e28fb3d5997fbbba10cc4fa614ae6168)
从(B2)式减(B1)式二次,得
(C)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer265.jpg?sign=1739218698-ThIUpYzn78TQ3l246evPDJGqUMWQCJVw-0-69df0ce294aa414cb7580fd86edad392)
又以(C1)式首项的系数3乘(C3)式,得
(D)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer281.jpg?sign=1739218698-TiAg9FYQZJKBl527kc6uvOBEaGrGmhyh-0-b2174ce4306be5a5e781b6b530610e5f)
从(D3)式减去(D1)式,得
(E)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer294.jpg?sign=1739218698-bxT6ccbTixIMN0rb4NmrmMIXEFkq6i9b-0-f96d022d72cd0e18f4cd535052d08297)
再以(E2)式首项的系数5乘(E3)式,得
(F)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer305.jpg?sign=1739218698-HQ6qzV5SjHIWh8fHczIBty0fDTCTvZtN-0-119180b12b5793df0a8098a793ede0bb)
从(F3)式减(F2)式四次,再以9除所余的式,得
(G)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer06.jpg?sign=1739218698-v3bla1DWtifH1xp3FmToZvpJSSgbCOUB-0-4a39aae036e67d9655de5ce8cebf040b)
以(G3)式首项的系数4乘(G2)式,得
(H)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer29.jpg?sign=1739218698-KNomPkmM08OD9H32UQSPsVUhAiOXP09p-0-32e898fcd3dd7d903c93ae990a75374c)
从(H2)式减(H3)式,再以(G2)式首项的系数5除,得
(I)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer54.jpg?sign=1739218698-q92OQfzromlqNw2yM9fF9fz8owZzcIPP-0-e93efccff2fd28b2f731fd45ef32be5e)
以(I3)式首项的系数4乘(I1)式,得
(J)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer72.jpg?sign=1739218698-hgxLCybXTf08Cju4EOdnO5lXOntM8iqm-0-89ef87d52dd01e3b3f08621d064bd341)
从(J1)式减(J2)式二次,再减(J3)式,再以(I1)式首项的系数3除,得
(K)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer85.jpg?sign=1739218698-EnUIadn4bxjea4VRtd3scCUQdKJhkK7H-0-f3d10e30f8fc113c69a55ee2a592c0dc)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer103.jpg?sign=1739218698-WkaKsF57j92omciq9bXC1D405fTgLFzY-0-b5f53532df4c0eec9512428c5a68a0aa)
从上举的解法,可见古时的方程算法很是别致,虽较新法略繁,但步骤非常整齐,在使用筹算时可说是很便利的。
【例二】今有上禾6秉的实,去掉1斗8升,等于下禾10秉的实,下禾15秉的实,去掉5升,等于上禾5秉的实。问上下禾各1秉有实多少?答:上禾1秉有实8升,下禾1秉有实3升。(题见《九章算术》)
列上禾6秉正,下禾10秉负,实18升正于左行;又列上禾5秉负,下禾15秉正,实5升正于右行,如(A)式(负数的筹式,《九章算术》用颜色分别,现在为便利计,仿宋代的方法在末位加一斜划)。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer68.jpg?sign=1739218698-zOsQtXdSvDZ8TXC0p6L82kZQaFt7R2sH-0-0c2b5003c1a4c08656062b5cb9e3e859)
以左行上禾遍乘右行,如(B)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer69.jpg?sign=1739218698-VmjI0gD6ht9voRem3VnIbCnfjlifEvpk-0-fddcaf9e78c7f564c7a958762ce3dc02)
从右行累加左行,经五次而头位尽,如(C)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer70.jpg?sign=1739218698-41l6mcpnGRDzTFpXHrWdFRtz8e30aK8m-0-163faf88b4db204978a6ecbffd285a98)
右行上数做除数,下数做被除数,除得商数是下禾1秉的实,如(D)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer71.jpg?sign=1739218698-IBvHX3dyJETTReLfyNNhxNgoPoOrBYMN-0-46b36af82d7a4369a57bbdfa5ec4c8d6)
又以所得数乘左行下禾,从左行末位减,再以头位除,得上禾1秉的实,如(E)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer83.jpg?sign=1739218698-fFdZkmD2dKStyrRRECpqUrcQlYyXFCvz-0-622ef6fed9735cf341b754c9421f5cad)
设上禾1秉的实是x升,下禾1秉的实是y升,那么依题意可得二元一次方程组如下:
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer115.jpg?sign=1739218698-NcTpL33NwVZegmOnwupV7ma9PlQRarGe-0-a0dba76cff273cbc2860913c153021b8)
移项,整理,得
(A)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer128.jpg?sign=1739218698-6dLVtCDOohgbkRXIJOZ9JbIqiURRy8MD-0-de1ee657d2937e1f3a8169b6f6a8d8d6)
以(A1)式首项的系数6乘(A2)式,得
(B)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer139.jpg?sign=1739218698-D4iBmQubthic8bqpcFUP4MyGbZOZbsAh-0-b939751283e3d2679a1d155442ca86e5)
(B2)式加上(B1)式五次,得
(C)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer150.jpg?sign=1739218698-oWlP0dHXLjut6rnxDnb1ec8KxzUdm4yY-0-42f6090a20af8ad08e54c7c4e14fc6c3)
去掉(C2)式左边的系数,得
(D)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer162.jpg?sign=1739218698-EkvebQcbexWLJnWpVSblGSiCL8navnmZ-0-145a55bad9ac825a5e292574bc45ef86)
以(D2)式右边的3乘(D1)式的第二项系数,从右边18减,再以第一项系数6除,得
(E)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer173.jpg?sign=1739218698-7XHWmIqhheTW4kirzWtvsfkUDV5Pbclo-0-a20ecf9248696b86f7a4d607713cc2ad)
在上举的解法中,有(-30)+(+6)=-24,(+90)+(-10)=+80,(+18)-(-30)=+48……的正负数加减法,又有(-5)×(+6)=-30的乘法。