本章参考文献

[1]潘越.海上蒸发波导微波传播建模及特性研究[D].西安:西北工业大学2008.

[2]ONR. Report on the Universal Undersea Navigation/Communication Gateway Platforms Workshop[R];2001.

[3]BREKHOVSKIKH L. Waves in Layered Media 2e: Elsevier, 2012.

[4]BUDDEN K G. The wave-guide mode theory of wave propagation: Logos Press, 1961.

[5]WAIT J R. Electromagnetic Waves in Stratified Media: Revised Edition Including Supplemented Material: Elsevier, 2013.

[6]DOCKERY G D, KUTTLER J R. An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation[J].Antennas and Propagation, IEEE Transactions on, 1996, 44(12):1592-1599.

[7]KELLER J B, PAPADAKIS J S. Wave Propagation and Underwater Acoustics[C].1977.

[8]KUTTLER J R, DOCKERY G D. Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere[J].Radio Science, 1991, 26(2):381-393.

[9]KUTTLER J R, JANASWAMY R. Improved Fourier transform methods for solving the parabolic wave equation[J].Radio Science, 2002, 37(2):5-1-5-11.

[10]LEONTOVICH M, FOCK V. Solution of propagation of electromagnetic waves along the earth's surface by the method of parabolic equations[J].J. Phys. Ussr, 1946, 10(1):13-23.

[11]LEVY M. Parabolic equation methods for electromagnetic wave propagation: IET, 2000.

[12]SAXTON J, LANE J. Meteorological factors in radio-wave propagation[J].London: The Physical Society, 1946:292.

[13]KERR D E. Propagation of short radio waves: IET, 1951.

[14]ANDERSON K D. Radar measurements at 16.5GHz in the oceanic evaporation duct[J].IEEE Transactions on Antennas and Propagation, 1989, 37(1):100-106.

[15]ANDERSON K D.94-GHz propagation in the evaporation duct[J].IEEE transactions on antennas and propagation, 1990, 38(5):746-753.

[16]ANDERSON K. Evaporation duct communication: Test Plan[J].Final Report, Oct.1989-Oct.1990 Naval Ocean Systems Center, San Diego, CA., 1991, 1.

[17]ROGERS L, ANDERSON K. Evaporation Duct Communication. Measurement Results[R]:DTIC Document;1993.

[18]ANDERSON K D. Radar detection of low-altitude targets in a maritime environment[J].IEEE transactions on antennas and propagation, 1995, 43(6):609-613.

[19]TAWFIK A, VILAR E. X-band transhorizon measurements of CW transmissions over the sea-Part I: path loss, duration of events, and their modelling[J].IEEE transactions on antennas and propagation, 1993, 41(11):1491-1500.

[20]DORFMAN N, KABANOV V, KIVVA F, et al. Refractive index statistical characteristics in above the see layer[J].Izv. Acad. Sci. SSSR Fizika Atmosferi i Okeana, 1978, 14:549-553.

[21]KOSHEL K V. Influence of layer and anisotropic fluctuations of the refractive index on the beyond-the-horizon SHF propagation in the troposphere over the sea when there is an evaporation duct[J].Waves in Random Media, 1993, 3:35-38.

[22]STRELKOV G. Propagation of a narrow radiobeam in an evaporation duct: A numerical experiment[J].Journal of communications technology&electronics, 1996, 41(14):1199-1205.

[23]ANDERSON K, FREDERICKSON P, TERRILL E. Air-sea interaction effects on microwave propagation over the sea during the rough evaporation duct (RED) experiment[J].12th ISA, 2003:9-13.

[24]ANDERSON K D, PAULUS R A. Rough evaporation duct (RED) experiment[C].2000.

[25]FREDERICKSON P A, DAVIDSON K, ANDERSON K, et al. Air-sea interaction processes observed from buoy and propagation measurements during the RED Experiment[C].2003.

[26]HRISTOV T, FRIEHE C. EM Propagation Over the ocean: Analysis of RED Experiment Data[C].2003.

[27]ABO-SELIEM A A. The transient response above an evaporation duct[J].Journal of Physics D:Applied Physics, 1998, 31(21):3046.

[28]KULESSA A, WOODS G, PIPER B, et al. Line-of-sight EM propagation experiment at 10.25GHz in the tropical ocean evaporation duct[J].IEE Proceedings-Microwaves, Antennas and Propagation, 1998, 145(1):65-69.

[29]WOODS G S, RUXTON A, HUDDLESTONE-HOLMES C, et al. High-capacity, long-range, over ocean microwave link using the evaporation duct[J].IEEE Journal of Oceanic Engineering, 2009, 34(3):323-330.

[30]GUNASHEKAR S, WARRINGTON E M, SIDDLE D, et al. Signal strength variations at 2GHz for three sea paths in the British Channel Islands: Detailed discussion and propagation modeling[J].Radio Science, 2007, 42(4).

[31]PASRICHA P, PRASAD M, SARKAR S. Comparison of evaporation duct models to compute duct height over Arabian sea and Bay of Bengal[J].INDIAN JOURNAL OF RADIO AND SPACE PHYSICS, 2002, 31(3):155-158.

[32]LEE Y H, DONG F, MENG Y S. Near sea-surface mobile radiowave propagation at 5GHz:measurements and modeling[J].Radioengineering, 2014, 23(3).

[33]LEE Y H, MENG Y S. Key considerations in the modeling of tropical maritime microwave attenuations[J].International Journal of Antennas and Propagation, 2015.

[34]YEE HUI L, MENG Y S. Empirical Modeling of Ducting Effects on a Mobile Microwave Link Over a Sea Surface[J].RADIOENGINEERING, 2012, 21(4):1055.

[35]康士峰,张玉生,王红光.对流层大气波导[M].北京:科学出版社,2014.

[36]张永刚.海洋声光电波导效应及应用[M].北京:电子工业出版社,2014.

[37]黄小毛,张永刚,王华,等.蒸发波导中雷达异常性能的仿真与分析[J].系统仿真学报,2006,18(2):513-516.

[38]黄小毛,张永刚,王华,等.蒸发波导环境下雷达超视距性能评估方法[J].电子科技大学学报,2007,36(1):36-39.

[39]王华,赵颖,黄小毛.蒸发波导对雷达探测的影响[J].现代雷达,2004,26(4):5-7.

[40]刘成国.蒸发波导环境特性和传播特性及其应用研究[D].西安电子科技大学,2003.

[41]刘成国,潘中伟,蔺发军,等.一种预测低层大气折射率剖面的实用方法[J].电波科学学报,1998,(4):403-406.

[42]钟淼,刘成国,黎杨,等.蒸发波导对雷达探测性能的影响[J].中国雷达,2009:1-4.

[43]察豪,史建伟,张萍.蒸发波导条件下雷达探测距离的估计方法[J].现代雷达,2006,28(9):5-7.

[44]史建伟,察豪,林伟,等.利用APM理论分析蒸发波导对舰载雷达探测范围的影响[J].微计算机信息,2006,22(10):147-148.

[45]田斌,察豪,王月清,等.蒸发波导对雷达探测距离的影响[J].微计算机信息,2007,23(3):145-146.

[46]田斌,察豪,周沫,等.蒸发波导解析MGB模型适应性研究[J].兵工学报,2010,31(6):796-801.

[47]田斌,于淑娟,李杰,等.蒸发波导PJ模型在亚热带海区适应性研究[J].舰船科学技术,2009,(9):96-99.

[48]左雷,察豪,田斌,等.海上蒸发波导PJ模型在我国海区的适应性初步研究[J].电子学报,2009,37(5):1100-1103.

[49]丁菊丽,费建芳,黄小刚,等.稳定度关系式对蒸发波导模型的影响[C].2011/01/01.

[50]丁菊丽,费建芳,黄小刚,等.稳定层结条件下非线性相似函数对蒸发波导模型的改进[J].热带气象学报,2011,27(3):410-416.

[51]丁菊丽,费建芳,黄小刚,等.南海、东海蒸发波导出现规律的对比分析[J].电波科学学报,2009,24(6):1018-1023.

[52]丁菊丽,费建芳,黄小刚,等.基于局地相似理论的蒸发波导计算方案及敏感性试验[J].海洋通报,2009,28(1):86-95.

[53]盛峥.扩展卡尔曼滤波和不敏卡尔曼滤波在实时雷达回波反演大气波导中的应用[J].物理学报,2011,60(11):812-818.

[54]盛峥,陈加清,徐如海.利用粒子滤波从雷达回波实时跟踪反演大气波导[J].物理学报,2012,61(6):69301-069301.

[55]盛峥,黄思训.雷达回波资料反演海洋波导的算法和抗噪能力研究[J].物理学报,2009,(6):4328-4334.

[56]盛峥,黄思训,曾国栋.利用Bayesian-MCMC方法从雷达回波反演海洋波导[J].物理学报,2009,(6):4335-4341.

[57]盛峥,黄思训,赵小峰.雷达回波资料反演海洋波导中观测值权重的确定[J].物理学报,2009,(9):6627-6632.

[58]DING J, FEI J, HUANG X, et al. Development and validation of an evaporation duct model. Part I:Model establishment and sensitivity experiments[J].Journal of Meteorological Research, 2015, 29:467-481.

[59]DING J, FEI J, HUANG X, et al. Development and validation of an evaporation duct model. Part II:Evaluation and improvement of stability functions[J].Journal of Meteorological Research, 2015, 29:482-495.

[60]DING J-L, FEI J-F, HUANG X-G, et al. Improvement to the evaporation duct model by introducing nonlinear similarity functions in stable conditions[J].热带气象学报(英文版),2011,17(1):64-72.

[61]HUANG S-X, ZHAO X, SHENG Z. Refractivity estimation from radar sea clutter[J].Chinese Physics B, 2009, 18(11):5084.

[62]ZHAO X, HUANG S. Estimation of atmospheric duct structure using radar sea clutter[J].Journal of the Atmospheric Sciences, 2012, 69(9):2808-2818.

[63]ZHAO X. Evaporation duct height estimation and source localization from field measurements at an array of radio receivers[J].Antennas and Propagation, IEEE Transactions on, 2012, 60(2):1020-1025.

[64]ZHAO X. Source Localization in the Duct Environment with the Adjoint of the PE Propagation Model[J].Atmosphere, 2015, 6(9):1388-1398.

[65]ZHAO X, HUANG S. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment[J].Radioengineering, 2010, 19(4):601.

[66]ZHAO X, HUANG S. Refractivity from clutter by variational adjoint approach[J].Progress In Electromagnetics Research B, 2011, 33:153-174.

[67]ZHAO X, HUANG S. Atmospheric duct estimation using radar sea clutter returns by the adjoint method with regularization technique[J].Journal of Atmospheric and Oceanic Technology, 2014, 31(6):1250-1262.

[68]ZHAO X, HUANG S X, DU H D. Theoretical analysis and numerical experiments of variational adjoint approach for refractivity estimation[J].Radio science, 2011, 46(1).

[69]ZHAO X, HUANG S X, WANG D X. Using particle filter to track horizontal variations of atmospheric duct structure from radar sea clutter[J].Atmospheric Measurement Techniques, 2012, 5(11):2859-2866.

[70]赵小峰,黄思训.大气波导条件下雷达海杂波功率仿真[J].物理学报,62(9):99204-099204.

[71]ZHAO X, HUANG S. Refractivity estimations from an angle-of-arrival spectrum[J].Chinese Physics B, 2011, 20(2):029201.

[72]赵小峰,黄思训.垂直天线阵观测信息反演大气折射率廓线[J].物理学报,2011,60(11):119203-119203.

[73]ZHAO X, SI-XUN H, JIE X, et al. Remote sensing of atmospheric duct parameters using simulated annealing[J].Chinese Physics B, 2011, 20(9):099201.

[74]ZHAO X, SI-XUN H, ZHENG S. Ray tracing/correlation approach to estimation of surface-based duct parameters from radar clutter[J].Chinese Physics B, 2010, 19(4):049201.

[75]ZHAO X, WANG D, HUANG S. Atmospheric duct estimation from multi-source radar sea clutter returns:theoretical framework and preliminary numerical results[J].Chinese Science Bulletin, 2014, 59(34):4899-4906.

[76]ZHAO X, WANG D, HUANG S, et al. Statistical estimations of atmospheric duct over the South China Sea and the tropical eastern Indian Ocean[J].Chinese Science Bulletin, 2013, 58(23):2794-2797.

[77]潘越,杨坤德,马远良.粗糙海面对微波蒸发波导超视距传播影响研究[J].计算机仿真,2008,25(5):324-328.

[78]杨坤德,马远良,史阳.西太平洋蒸发波导的时空统计规律研究[J].物理学报,2009,(10):7339-7350.

[79]赵楼,杨坤德,杨益新.海洋蒸发波导信道的多径时延[J].探测与控制学报,2010,32(1):39-44.

[80]朱明永,杨坤德.蒸发波导水平不均匀性对电磁波传播的影响[J].探测与控制学报,2008,30(6):32-36.

[81]SHI Y, KUN-DE Y, YI-XIN Y, et al. Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation[J].Chinese Physics B, 2015, 24(4):4102.

[82]SHI Y, YANG K, MA Y, et al. Short term forecast of the evaporation duct for the West Pacific Ocean[C].2013.IEEE.p 1-4.

[83]SHI Y, YANG K, YANG Y, et al. Spatio-temporal distribution of evaporation duct for the South China Sea[C].2014.IEEE.p 1-6.

[84]SHI Y, YANG K, YANG Y, et al. A new evaporation duct climatology over the South China Sea[J].Journal of Meteorological Research, 2015, 29:764-778.

[85]SHI Y, YANG K-D, YANG Y-X, et al. Influence of obstacle on electromagnetic wave propagation in evaporation duct with experiment verification[J].Chinese Physics B, 2015, 24(5):4101.

[86]SHI Y, ZHANG Q, YANG Y, et al. Frequency response of evaporation duct channel for electromagnetic wave propagation[C].2016.IEEE.p 1-5.

[87]YANG K, ZHANG Q, SHI Y, et al. On analyzing space-time distribution of evaporation duct height over the global ocean[J].Acta Oceanologica Sinica, 2016, 35(7):20-29.

[88]ZHANG Q, YANG K, SHI Y. Spatial and temporal variability of the evaporation duct in the Gulf of Aden[J].Tellus A, 2016, 68.

[89]ZHANG Q, YANG K, SHI Y, et al. Oceanic propagation measurement in the Northern part of the South China Sea[C].2016.IEEE.p 1-4.

[90]DOCKERY G D, GOLDHIRSH J. Atmospheric data resolution requirements for propagation assessment:case studies of range-dependent coastal environments[C].1995.

[91]KARIMIAN A, YARDIM C, GERSTOFT P, et al. Refractivity estimation from sea clutter: An invited review[J].Radio science, 2011, 46(6).

[92]YARDIM C, GERSTOFT P, HODGKISS W S. Tracking refractivity from clutter using Kalman and particle filters[J].Antennas and Propagation, IEEE Transactions on, 2008, 56(4):1058-1070.

[93]YARDIM C, GERSTOFT P, HODGKISS W S. Sensitivity analysis and performance estimation of refractivity from clutter techniques[J].Radio science, 2009, 44(1).

[94]BABIN S M, YOUNG G S, CARTON J A. A new model of the oceanic evaporation duct[J].Journal of Applied Meteorology, 1997, 36(3):193-204.

[95]田明远.无线电探空仪[J].科学大众:科学教育,1956,(2).

[96]GOLDHIRSH J, DOCKERY G D, MEYER J H. Three years of C band signal measurements for overwater, line-of-sight links in the mid-Atlantic coast:2.Meteorological aspects of sustained deep fades[J].Radio science, 1994, 29(6):1433-1447.

[97]蔺发军,刘成国,潘中伟.近海面大气波导探测及与其它研究结果的比较[J].电波科学学报,2002,17(3):269-272.

[98]DOUVENOT R, FABBRO V, GERSTOFT P, et al. Real time refractivity from clutter using a best fit approach improved with physical information[J].Radio science, 2010, 45(1).

[99]GERSTOFT P, HODGKISS W S, ROGERS L T, et al. Probability distribution of low-altitude propagation loss from radar sea clutter data[J].Radio science, 2004, 39(6).

[100]GERSTOFT P, ROGERS L T, KROLIK J L, et al. Inversion for refractivity parameters from radar sea clutter[J].Radio science, 2003, 38(3).

[101]YARDIM C, GERSTOFT P, HODGKISS W S. Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis[J].Antennas and Propagation, IEEE Transactions on, 2006, 54(4):1318-1327.

[102]FREDERICKSON P, DAVIDSON K, NEWTON A. An operational bulk evaporation duct model[C].2003.p 9-11.

[103]JESKE H. State and limits of prediction methods of radar wave propagation conditions over sea. Modern Topics in Microwave Propagation and Air-Sea Interaction: Springer, 1973:130-148.

[104]LIU W T, KATSAROS K B, BUSINGER J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J].Journal of the Atmospheric Sciences, 1979, 36(9):1722-1735.

[105]PAULUS R A. Practical application of an evaporation duct model[J].Radio Science, 1985, 20(4):887-896.

[106]MUSSON-GENON L, GAUTHIER S, BRUTH E. A simple method to determine evaporation duct height in the sea surface boundary layer[J].Radio science, 1992, 27(5):635-644.

[107]LIU W T, BLANC T V.bulk atmospheric flux computational iteration program in FORTRAN and BASIC[R]:DTIC Document;1984.

[108]COOK J. A sensitivity study of weather data inaccuracies on evaporation duct height algorithms[J].Radio science, 1991, 26(3):731-746.

[109]COOK J, BURK S. Potential refractivity as a similarity variable[J].Boundary-Layer Meteorology, 1992, 58(1-2):151-159.

[110]FAIRALL C, BRADLEY E F, HARE J, et al. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm[J].Journal of climate, 2003, 16(4):571-591.

[111]BABIN S M, DOCKERY G. Development and Experimental Evaluation of Oceanic Evaporation Duct Models Based on the LKB Approach[R]:DTIC Document;1999.

[112]BABIN S M, DOCKERY G D. LKB-Based Evaporation Duct Model Comparison with Buoy Data[J].Journal of Applied Meteorology, 2002, 41(4):434-446.

[113]PATTERSON W L. Advanced refractive effects prediction system (AREPS)[C].2007.IEEE.p 891-895.

[114]KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American meteorological Society, 1996, 77(3):437-471.

[115]TWIGG K L. A smart climatology of evaporation duct height and surface radar propagation in the Indian Ocean[R]:DTIC Document;2007.

[116]DIMEGO G. WRF Development Activities at NCEP[C].2004.p 10-15.

[117]JANJIC Z I, BLACK T, PYLE M, et al. The NCEP WRF core[C].2004.Citeseer.

[118]JOSEPH B. Weather research and forecasting model: A technical overview[C].2004.p 10-15.

[119]张金善,钟中,黄瑾.中尺度大气模式MM5简介[J].海洋预报,2005,22(1):31-40.

[120]王喆,王振会,张玉生.利用WRF模式对海上蒸发波导的数值模拟研究[J].海洋技术学报,2010,29(3):93-97.

[121]焦林.An evaporation duct prediction model coupled with the MM5[J].Acta Meteorologica Sinica, 2009,34(5):46-50.

[122]焦林,张永刚.基于中尺度大气模式MM5下的海洋蒸发波导预报研究[J].气象学报,2009,67(3):382-387.

[123]CHOI J. Performance Comparison of Tropospheric Propagation Models: Ray-Trace Analysis Results Using Worldwide Tropospheric Databases[R].DTIC Document, 1997.

[124]BOOKER H, WALKINSHAW W. The mode theory of tropospheric refraction and its relation to wave-guides and diffraction[J].Meteorological factors in radio-wave propagation, 1946:80-127.

[125]KO H W, SARI J W, SKURA J P. Anomalous microwave propagation through atmospheric ducts[J].Johns Hopkins APL Technical Digest, 1983, 4:12-26.

[126]DOCKERY G D. Modeling electromagnetic wave propagation in the troposphere using the parabolic equation[J].Antennas and Propagation, IEEE Transactions on, 1988, 36(10):1464-1470.

[127]THOMSON D J, CHAPMAN N R. A wide-angle split-step algorithm for the parabolic equation[J].The Journal of the Acoustical Society of America, 1983, 74(6):1848-1854.

[128]ZEBIC-LE HYARIC A. Wide-angle nonlocal boundary conditions for the parabolic wave equation[J].Antennas and Propagation, IEEE Transactions on, 2001, 49(6):916-922.

[129]BARRIOS A E. Considerations in the development of the advanced propagation model (APM) for US Navy applications[C].2003/01/01.IEEE.p 77-82.

[130]BARRIOS A E, ANDERSON K, LINDEM G. Low Altitude Propagation Effects——A Validation Study of the Advanced Propagation Model (APM) for Mobile Radio Applications[J].Antennas and Propagation, IEEE Transactions on, 2006, 54(10):2869-2877.

[131]DOCKERY G D, AWADALLAH R S, FREUND D E, et al. An Overview of Recent Advances for the TEMPER Radar Propagation Model[C].2007/01/01.IEEE.p 896-905.

[132]NEWKIRK M H. Recent advances in the tropospheric electromagnetic parabolic equation routine (TEMPER) propagation model[J].1997 Battlespace Atmosph. Conf, 1998.

[133]BROOKNER E, CORNELY P R, LOK Y F. AREPS and TEMPER-getting familiar with these powerful propagation software Tools[J].Radar Conference, 2007 IEEE, 2007:1034-1043.