第2章 TensorFlow基础知识

2015年11月,Google首次宣布开源TensorFlow,经过多次迭代,2017年2月,Google发布了更加稳定并且性能更加强劲的TensorFlow 1.0。2019年10月,Google正式发布了TensorFlow 2.0。在1.0的基础上,2.0版本的TensorFlow在以下方面进行了增强。

1)对开发者更加友好,默认为即时执行模式(Eager Mode,或称为动态图模式)。TensorFlow代码现在可以像正常的Python代码一样运行,这大大提高了人们的开发效率。

2)在需要提高性能的地方可利用@tf.function切换成Autograph模式。

3)Keras已经成为TensorFlow 2.0版本的官方高级API,推荐使用tf.keras。

4)清理了大量的API,以简化和统一TensorFlow API。

5)改进tf.data功能,基于tf.data API,可使用简单的代码来构建复杂的输入。

6)提供了更加强大的跨平台能力。通过TensorFlow Lite,我们可以在Android、iOS以及各种嵌入式系统中部署和运行模型。通过TensorFlow.js,我们可以将模型部署在JavaScript环境中。本章将从以下几个方面介绍TensorFlow的基础内容。

❑简单说明TensorFlow 2+的安装;

❑层次架构;

❑张量与变量;

❑动态计算图;

❑自动图;

❑自动微分;

❑损失函数、优化器等;

❑通过实例把这些内容贯穿起来。