1.1.3 单片机的外部引脚

1.单片机的封装和逻辑符号

单片机型号有很多种,不同型号又有多种封装外形,传统8051单片机或兼容8051系列的单片机多采用DIP40封装,也有DIP20、DIP28以及扁平封装等多种形式。图1-5a所示为双列直插式封装外形,图1-5b所示为扁平封装,图1-5c所示为51单片机的电路原理符号,其中电源正极和地两个端隐藏。40个引脚按功能分为4个部分,即电源引脚(VCC和VSS)、时钟引脚(XTAL1和XTAL2)、控制信号引脚(RST、和ALE)以及I/O口引脚(P0~P3)。

2.引脚功能描述

(1)电源引脚

在DIP40封装中,40脚为单片机电源正极VCC引脚,20脚为单片机的接地VSS引脚。在正常工作情况下,VCC接+5V电源,为了保证单片机运行的可靠性和稳定性,电源电压波动不超过0.5V。可移动的电子系统可采用宽电压的单片机设计,电源直接利用电池供电,实验情况下也可以用三节普通电池或计算机的USB接口供电。一般电路中常采用集成稳压器7805提供电源。图1-6所示为单片机常用的集成稳压电源,为了提高电路的抗干扰能力,电源正极与地之间接有滤波电容器。

(2)单片机的I/O口引脚

单片机的I/O口是用来输入和控制输出的端口,DIP40封装的8051单片机共有P0、P1、P2、P3 4组端口,分别与单片机内部P0、P1、P2、P3 4个寄存器对应连接,每组端口有8位,共有32个I/O口。

图1-5 MCS-51系列单片机的引脚分布图

图1-6 单片机常用的集成稳压电源

P0口分别占用32~39脚,依次命名为P0.0~P0.7,与其他I/O口不同,P0口是漏极开路(OD门)的双向I/O口,P0口中任意一位电路原理如图1-7所示,其中端口P0.×的输出与内部对应的寄存器P0.×状态一致。单片机在访问片外存储器时,P0口分时作为低8位地址线和8位双向数据总线用,此时不需外接上拉电阻;如果将P0口作为通用的I/O口使用,则要求外接上拉电阻或排阻,每位以吸收电流的方式驱动8个LSTTL门电路或其他负载。

P1口占用1~8脚,分别是P1.0~P1.7。P1口是一个带内部上拉电阻的8位双向I/O口,每位能驱动4个LSTTL门负载。这种端口没有高阻状态,输入不能锁存,因而不是真正的双向I/O口。

P2的8个端口占用21~28脚,分别是P2.0~P2.7。P2口也是一个带内部上拉电阻的8位双向I/O口。在访问外部存储器时,P2口输出高8位地址,每位也可以驱动4个LSTTL负载。

P3口的8个引脚占用10~17脚,分别是P3.0~P3.7。P3是双功能端口,作为普通I/O口使用时,同P1、P2口一样,作为第二功能使用时,引脚定义见表1-1。P3口的第二功能,能使硬件资源得到充分利用。

表1-1 P3口的第二功能引脚定义

(3)时钟引脚

单片机有两个时钟引脚,分别是19脚XTAL1和18脚XTAL2,用于提供单片机的工作时钟信号。单片机是一个复杂的数字系统,内部CPU以及时序逻辑电路都需要时钟脉冲,所以单片机需要有精确的时钟信号。

单片机内部含有振荡电路,19脚和18脚用来外接石英晶体和微调电容。在使用外部时钟时,XTAL2则用来输入时钟脉冲,如图1-7所示。其中图1-7a为晶体振荡电路,图1-7b为外部时钟输入电路。利用外部时钟输入时,要根据单片机型号XTAL1接地或悬空,并考虑时钟电平的兼容性。

图1-7 单片机时钟电路

(4)控制引脚

在DIP40引脚封装中,9脚RST/VPD为复位/备用电源引脚,在此引脚外加两个机器周期的高电平就能使单片机复位。

30脚为锁存信号输出/编程引脚,在早期扩展了外部存储器的单片机系统中,单片机访问外部存储器时,ALE用于锁存低8位的地址信号。

29脚为输出访问片外程序存储器的读选通信号引脚。在CPU从外部程序存储器取指令期间,该信号每个机器周期两次有效。在访问片外数据存储器期间,这两次信号将不出现。

31脚用于区分片内外低4KB范围存储器空间。该引脚接高电平时,CPU访问片内程序存储器4KB的地址范围。若PC值超过4KB的地址范围,CPU将自动转向访问片外程序存储器;当此引脚接低电平时,则单片机只访问片外程序存储器,忽略片内程序存储器。

在STC系列单片机中,以上ALE、引脚已经省略,取而代之的是P4接口。

掌握单片机内部的各个部件功能、外部引脚特性是分析和设计单片机应用系统的硬件基础,只有全面地了解单片机的硬件以及单片机外部器件特性,才能熟练应用单片机系统所提供的硬件资源,设计开发出性价比较高的应用系统。