第5章
- 形而上学
- (古希腊)亚里士多德
- 2567字
- 2016-02-19 12:00:26
在所有这些问题之上,我们还要提出这样一个问题,即形式对于对可感的永恒事物,以及可以生成与消灭的事物有什么益处?因为它们既不导致运动,也不导致变化。它对于我们认识其他事物也没有什么帮助(因为它并非这些事物的实体,否则它就会存在于它们之中了),它对于它们的存在也没有什么益处,它不存在于共享形式的事物内部。我们可以认为,它们被作为原因,正像白可以通过进入白色物体之中而产生白色,不过这也是不能让人信服的。阿那克萨戈拉最先提出这个观点,后来优多克索斯和其他一些思想家也使用了它,但是我们可以在其中找到很多可以进行反驳的地方。此外,所有其他的事物都不是在“形式”的寻常意义上而出自形式的。说形式是模式,别的东西共享它们的话,也是诗意的隐喻。
模仿理念是什么意思呢?相似的事物同样能够存在和生成,如果它们不模仿其他事物的话。因此无论苏格拉底是否存在,和其相像的人都是能够生成的,如果苏格拉底是永恒的,也是如此。存在着同一个事物的不同模式,也存在着不同的形式,例如,“动物的”“两足的”和“人自身”都是人的形式。再者,形式同时是可感事物及其自身的模式,也就是说,种,作为不同属的种,也将会是如此。因此模式和它的复制品都是相同的。
再者,实体和以其为实体的事物分离存在似乎是不可能的。如果的确相分离,理念是如何成为它们的实体的呢?《斐多》中我们已经讲到:形式是存在与生成的原因。当形式存在的时候,那些共享它们的事物并不会生成,除非存在着一个发起最初运动的事物还有许多其他的事物生成了(例如房子或者戒指)但我们认为这些事物并不具有形式。显然,因此也会有其他东西存在和生成的事物,这是由于我们刚刚提到的那些产生事物的原因。
此外,如果形式是数目的话,它们是如何成为原因的呢?是因为存在物是别的数目吗?例如,一个数目是人,另一个数目是苏格拉底,还有一个数目则是卡利亚。为什么这些数目是存在物的原因呢?如果前者是永恒的而后者不是,这也不会产生任何影响。但如果可感世界(例如和谐)中的事物是数目的比例,显然在那些作为比例的事物之间的事物是同一类的。倘若这种质料是某种确定的事物,显然数目自身就将会是一个事物对另一个事物的比例。例如,如果卡利亚是火、土、水、气之间的数目性的比例,它的理念就将会是其他基质的数目。人自身,无论他是否是数目,都将是某种事物的数目性的比例,而不是一个恰当的数目,甚至不是数目,它仅仅是一种数学性的比例。
再者,一个数目是从多少个数目中生成的?一个形式是怎样从多个形式中生成的呢?如果不是从数目生成而是由存在于其中的单位构成,例如在一万中那样,则它们之间存在着什么样的关系呢?如若它们都相同,就会得出荒谬的结果,如果它们不相似的话也会如此(处于同一个数目中的单位是不同的,而且存在于不同数中的单位也是不同的)。如果它们没有性质的话,该怎么进行区分呢?这些观点不能令人信服,也与有关质料的说法不一致。
此外,他们还需要提出另一种数目(也就是算术学所考察的那种),有些思想家称它们的对象为“中间物”,这些是如何存在的或者它们是从什么样的本原中产生的?为什么它们一定是存在于可感世界与可感事物自身中的中间物呢?
而且,每一个单位都来自一个先在的事物,这是不可能的。再者,为什么所有的数目都可以被聚合为一呢?此外,在我们所说的之外,如果单位之间是不同的,那么柏拉图主义者就会像其他人所讲的四种或两种元素那样,这些思想家中的每一个都还不会给那些共同的元素一个称谓,例如,对于物体,而不是对于火和土,是否存在共同之处呢?如物体。但事实上,柏拉图主义者说正如火和水是同质的那样,如果确实如此,数目就不会是实体。显然,如果存在着一自身并且它是一个第一本原,“一”就会在很多种意义上被使用,否则这种理论就是不可能的。
如果我们想要把实体归于它们的本原,我们就会主张线是出自短和长的(即出自于小和大),面是出自宽和窄,而体则是出自深和浅。然而,平面是如何包含线,体是如何包含线和面的呢?因为宽和窄是不同于深和浅的,因此,正如数目不存在于这些事物中一样,因为多和少是与它们不同的,显然高级的事物是不会出现在低级事物之中的。但是宽也不是一个包含深的种,因为体就将会是一种面的属。此外,线中的点是出于什么本原而存在的呢?柏拉图不认为存在着一个这样的种,认为它是一种几何学的幻象。他给出了线的本原的名称,这就是他经常假定的不可分割的线。然而这一定存在着一个界限,因此根据线存在的说法,点的存在也能够得到证明。
一般来讲,虽然哲学寻求的是可感事物的原因,我们却要放弃这一点(我们并不讲变化开始的原因),然而我们却想象我们正在讲述可感事物的实体,然而我们对于可感事物的实体的解释这是空谈,因为“共享”,如我们之前讲的那样,并不意味着任何事情。
形式与我们在技艺中见到的原因也没有任何联系,因为思想和整个自然都通过我们主张为第一本原的一种原因进行运作。但对于现代思想家来说,数学变成与哲学相同了,虽然他们说应该考察其他事物的目的。此外,有些主张作为质料的实体太过于数学化,它是实体的表述和差别,即是质料的,而非质料自身。也就是说,大和小就像自然哲学家所说的密和疏一样,把它们称为基质的最初差别,因为它们是一种过度或者不足。至于运动,如果大和小是运动的,显然形式就会被运动,但假如它们不是运动,那运动又是从什么时候开始的呢?对于自然的所有研究就都会被毁灭了。
证明所有的事物为“一”被认为是件容易的事情,然而事实上却并非如此。如果我们考察所有的条件也得不出这个结论,就只能得到一自身的存在;如果我们不认为普遍是一个种的话,我们就连这一点也得不出来,而在某些例子中这也是不可能的。
而解释清楚出自数目的线、面和体是如何存在或不存在也是很难的,它们都具有什么样的意义也是如此,因为它们既不是形式(因为它们不是数目),也不是中间物(因为它们是数学对象),也不是可消灭的事物。它们显然是第四类事物。
总之,如果在不区分事物存在的多种意义的情况下追寻存在物的元素,我们就不可能找到它们,尤其是如果我们使用的是这种方法的话。因为发现“动者”“被动者”或者“直的”事物是由什么构成的是不可能的,但如果元素可以被发现的话,那就只可能是实体的元素,因此无论是寻找存在物的元素还是认为某种事物具有它们都是不正确的。