1.2 算法,如何改变命运

问题

算法,如何改变命运?

引言

近年来,随着大数据的飞跃式发展,各种大数据的衍生产品已经开始越来越深地影响我们的生活,例如,社交有腾讯大数据,购物有阿里大数据,搜索有百度大数据,出行有滴滴大数据,等等。当数据积累得越来越多,就需要算法来挖掘出数据的价值。特别是进入大数据时代后,算法显得越来越重要。

让死的数据变得有价值,就是算法的力量。进入全民大数据的时代后,数据已经不再是门槛儿,最重要的是算法,算法才能真正创造生产力。相应的,算法工程师的价值也会越来越大,但是你们真得发掘到自己的价值了吗?

1.2.1 算法在各个行业的应用

大数据的兴起冲击着各行各业,带来机遇也带来挑战。可以说,没有数据你就没有核心价值。当有了数据作为基础,你还需要继续思考如何让数据变得有价值。2016年的投资市场很惨淡,唯有人工智能大火了一把。从深度挖掘(Deep Learning)技术在图像识别领域的精确识别,迭代决策树(GBDT)在数据挖掘算法比赛中频繁获奖,到AlphaGo在围棋领域打败人类选手,百度小度机器人在“最强大脑”的舞台上挑战人类脑王,等等,这些事件都是算法领域的突破。

算法,真的已经应用到了各行各业,在慢慢改变着人们的生活和习惯,比如图像识别、自动驾驶、用户行为、金融征信、量化投资等领域,都在发生着变化。

在图像识别领域,深度学习算法异军突起,其不仅可以进行准确的人脸识别、指纹识别,还可以进行复杂的图像对比。我深刻记得,在2016年的光谷人工智能大会上,西安电子科技大学公茂果教授分享的“深度神经网络稀疏特征学习与空时影像变化检测”主题,他利用图像识别技术,对比汶川地震前后的卫星照片和光感照片,准确地找到了受到地震影响最严重的区域,即震前和震后地貌发生变化最大的区域,快速地为救援队定位到最需要帮助的地点,解救伤者,投放救援物资。

在自动驾驶领域,可以通过识别路面的状况来实现自动驾驶、自动停车。Uber无人驾驶汽车已经在匹兹堡上路测试,自动驾驶汽车配备了各式传感器,包括雷达、激光扫描仪以及高分辨率摄像头,以便绘制周边环境的细节。自动驾驶汽车有望改善人类的生活质量,也可挽救百万人的生命,为人们提供更多的出行方便。5年前,我在听斯坦福大学Andrew Ng的机器学习公开课时,就被当时的自动驾驶视频介绍所震撼,科幻电影中的世界就快变成现实了。

在用户行为分析领域,人类有各种各样的行为和需求。衣食住行,吃喝玩乐,都是人最基本的行为。大多数人的行为是共性的,商家可以收集这些行为数据,通过数据挖掘算法找到人们行为共性的规律。根据用户的购物行为,商家可以为用户推荐喜欢的商品,这样就有了推荐系统;根据用户对信息的查询行为,可以发现用户对信息的需求,这样就有了搜索引擎;根据用户位置的变化,可以发现用户的出行需求,这样就有了地图应用;根据用户个性化的行为,可以给用户打上标签,用来标注用户的特征或身份,这样就有了用户画像。用户行为分析,让商家了解用户习惯,同时也让用户了解自己,具有巨大的商业价值。

在金融领域也有很多算法应用的场景。

在金融征信领域,传统信贷业务是银行的核心业务,但由于中国人口众多且小客户居多,银行无法负担为小客户服务的高成本,导致民间信贷的兴起。2014年年底互联网金融P2P开始爆发,但在贷款需求被满足的同时,却暴露出了违约风险。征信体系缺失,导致很多P2P公司坏账率很高,到2016年年底P2P公司跑路的多达数千家。征信需求,变得非常迫切。比如,某个人想买车但现金不够,这时就需要进行贷款。商家给用户进行贷款时,通过信用风险的评级就能判断出这个用户的还款能力,从而决定贷给他多少钱,以什么周期还款,从而减少违约风险。支付宝的芝麻信用分,是目前被市场一致认可的信用评分模型。

量化投资领域,是我认为的所有领域中最复杂、最具有挑战性,同时也最有意思的领域。通过量化算法模型实现赚钱,这是最容易变现的一种方法。在金融投资领域中,有各式各样的数据可以反映各种金融市场的规则,有宏观数据、经济数据、股票数据、债券数据、期货数据、新闻数据以及情绪数据等。金融宽客(Quant)通过分析各式各样的数据,判断出国家的经济形势和个股的走势,结合投资组合算法,从而实现投资的盈利。

看到这里,我想问问大家,结合脑子里那些聪明的想法,你们有没有被金融行业的魅力撩动呢?

1.2.2 投身于哪个行业好

上面各个行业的算法应用都有很广阔的应用前景。作为一个算法的研究者,我们究竟投身到哪个行业更好呢?

这其实要从多个方面进行考虑,我们的目标是个人价值最大化。那么,你要选择一个自己能够接触到的、完全竞争的、短流程的渠道,利用你的算法技术和对业务的理解实现变现。

其实,满足个人变现的渠道非常有限,你很难通过一个图像识别的算法直接面向市场进行收钱,你需要有一个承载的产品,而产品研发的过程是非常漫长的。同样的,自动驾驶算法需要汽车生产厂商的验证;用户行为分析算法,需要电子商务平台以用户购买行为进行验证。

金融交易,是具备上述特征的一个渠道,你可以用个人账号在中国金融二级市场开户,完成交易的过程。这种方式不涉及太多中间环节,你可以获得交易所的数据,自己编写算法模型,然后用自己的钱去交易,完全自己把握。只要算法有稳定的收益率,就可以赚到钱。这种变现方法,其实就是量化投资,从金融的角度入手才是最靠谱的一种变现方法。

图1-7 金融!金融!金融!

1.2.3 金融最靠谱

作为IT人,我们懂编程、懂算法,只要再了解金融市场的规则,就能去金融市场“抢钱”了。中国的金融二级投资交易市场是一个不成熟的市场。在市场中,每天都存在着大量的交易机会,也会有“乌龙指”的情况。量化投资的技术,可以帮助我们发现这些由于信息不对称出现的机会,赚取超额的收益。

那么到底如何做量化投资呢?

下面举个例子,一个私募基金,募集了1亿资金准备进入金融市场。基金经理决定按照投资组合的建模思路,对各类金融资产进行组合配置。图1-8反应了各类资产以均值—方差的标准来创建投资组合,符合资本资产定价模型(CAPM)的原理。关于资本资产定价模型详细介绍,请参考2.1节。

图1-8 投资组合,收益方差

图1-8中,x轴为收益率的标准差,y轴为收益率的均值,图中的点构建了可投资区域,每个点代表一个可投资产品,而每条虚线连接的点的集合就是一个有效的投资组合。

对于图中近百个点来说,假设每次要配置5种资产做投资组合,那么就是75287 520种组合方法;如果配置10种资产,可选方案就是一个天文数字了。

我可以用R语言来计算一下投资组合的数量。

    # 100个选5个,做组合
    > choose(100,5)
    [1] 75287520

    # 100个选10个,做组合
    > choose(100,10)
    [1] 1.731031e+13

对于金融市场来说,有非常多的金融资产可供我们选择。中国A股有股票3000多只、基金2000多只、债券3000多只、期货100多只,还有大综商品、货币市场产品、汇率产品、海外投资市场等。如果把这么多种资产进行组合,将有无限多的投资组合可供选择,是一个无限大的计算量。因此,我们需要利用算法进行组合优化,从而找到市场上最优的投资组合。算法本身,才是最能体现价值的部分。

那么传统的基金是如何进行投资组合的呢?大多都是靠投资经理的主观投资经验来完成的。在金融市场里,每只基金都配置了不同的资产做组合。我们这里以华夏成长基金为例,看看它的投资组合是如何配置的。华夏成长(000001.OF)基金是股债混合型的。以下数据来源于万得资讯,2017年2月8日。

从图1-9华夏成长(000001.OF)的业绩表现来看,这只基金最辉煌的时期是在2006年~2007年,连续6个月回报101.49%,但最近1年表现就比较差,不仅落后于沪深300指数,整体排名也都在后面。今年以来收益率0.58%,同类排名144/507;1年收益率-1.45%,同类排名400/487;3年收益率11.67%,同类排名378/426;5年收益率39.96%,同类排名290/352。

图1-9 华夏成长(000001.OF)业绩表现

我们再来看一下这只基金的组合成分,主要是股票和债券。

债券占比(见表1-3):

表1-3 债券占比

股票占比(见表1-4):

表1-4 股票占比

之前都是基金经理从市场上几千只股票和债券中进行选择,并配置不同的权重,现在我们用算法一样也可以做到,并且用算法模型构建的组合业绩可能会更好。如果我们用算法模型可以取代年薪几百万的基金经理的工作,那么我们就能够获得这个收益,最终实现个人价值,从而用算法改变命运。所以,通过金融变现才是最靠谱的。

快来加入用算法改变命运的队伍吧,让知识变成财富!