- 石墨烯:从基础到应用
- 刘云圻等编著
- 3884字
- 2020-08-28 08:02:31
参考文献
[1] Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
[2] Frindt R F. Single crystals of MoS2 several molecular layers thick[J]. J Appl Phys, 1966, 37: 1928-1929.
[3] Ohashi Y, Koizumi T, Yoshikawa T, et al. Size effect inthe in-plane electrical resistivity of very thin graphite crystals[J]. Tanso, 1997, 235-238.
[4] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. P Natl Acad Sci USA, 2005, 102: 10451-10453.
[5] Dimiev A, Kosynkin D V, Sinitskii A, et al. Layer-by-layer removal of graphene for device patterning[J]. Science, 2011, 331: 1168-1172.
[6] Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology, 1999, 10: 269.
[7] Jayasena B, Subbiah S. A novel mechanical cleavage method for synthesizing few-layer graphenes[J]. Nanoscale Res Lett, 2011, 6: 95.
[8] Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J]. J Mater Chem, 2010, 20: 5817-5819.
[9] Blake P, Brimicombe P D, Nair R R, et al. Graphene-based liquid crystal device[J]. Nano Lett, 2008, 8: 1704-1708.
[10] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol, 2008, 3: 563-568.
[11] Warner J H, Rümmeli M H, Gemming T, et al. Direct imaging of rotational stacking faults in few layer graphene[J]. Nano Lett, 2008, 9: 102-106.
[12] Bourlinos A B, Georgakilas V, Zboril R, et al. Liquid-phase exfoliation of graphite towards solubilized graphenes[J]. Small, 2009, 5: 1841-1845.
[13] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319: 1229-1232.
[14] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and langmuir-blodgett films[J]. Nat Nanotechnol, 2008, 3: 538-542.
[15] Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation[J]. Nat Nanotechnol, 2006, 1: 60-65.
[16] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. J Am Chem Soc, 2009, 131: 3611-3620.
[17] Lotya M, King P J, Khan U, et al. High-concentration, surfactant-stabilized graphene dispersions[J]. ACS Nano, 2010, 4: 3155-3162.
[18] Green A A, Hersam M C. Solution phase production of graphene with controlled thickness via density differentiation[J]. Nano Lett, 2009, 9: 4031-4036.
[19] Liang Y T, Hersam M C. Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange[J]. J Am Chem Soc, 2010, 132: 17661-17663.
[20] Das S, Wajid A S, Shelburne J L, et al. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions[J]. ACS Appl Mater Inter, 2011, 3: 1844-1851.
[21] Yan L Y, Li W, Fan X F, et al. Enrichment of (8, 4) single-walled carbon nanotubes through coextraction with heparin[J]. Small, 2010, 6: 110-118.
[22] Badami D. Graphitization of α-silicon carbide[J]. Nature, 1962, 193: 569-570.
[23] Van Bommel A, Crombeen J, Van Tooren A. Leed and auger electron observations of the SiC(0001)surface[J]. Surf Sci, 1975, 48: 463-472.
[24] Forbeaux I, Themlin J-M, Charrier A, et al. Solid-state graphitization mechanisms of silicon carbide 6H–SiC polar faces[J]. Appl Surf Sci, 2000, 162: 406-412.
[25] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108: 19912-19916.
[26] Hass J, Feng R, Li T, et al. Highly ordered graphene for two dimensional electronics[J]. Appl Phys Lett, 2006, 89: 143106.
[27] Borovikov V, Zangwill A. Step-edge instability during epitaxial growth of graphene from SiC (0001)[J]. Phys Rev B, 2009, 80: 121406.
[28] Tromp R, Hannon J. Thermodynamics and kinetics of graphene growth on SiC (0001)[J]. Phys Rev Lett, 2009, 102: 106104.
[29] Virojanadara C, Syväjarvi M, Yakimova R, et al. Homogeneous large-area graphene layer growth on 6H-SiC(0001)[J]. Phys, Rev, B, 2008, 78: 245403.
[30] Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat Mater, 2009, 8: 203-207.
[31] Dimitrakopoulos C, Lin Y-M, Grill A, et al. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC(0001)for high frequency transistors[J]. J Vac Sci Technol B, 2010, 28: 985-992.
[32] De Heer W A, Berger C, Ruan M, et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide[J]. P Natl Acad Sci USA, 2011, 108: 16900-16905.
[33] Hannon J, Tromp R. Pit formation during graphene synthesis on SiC(0001): in situ electron microscopy[J]. Phys Rev B, 2008, 77: 241404.
[34] Srivastava N, Feenstra R M, Fisher P. Formation of epitaxial graphene on SiC(0001)using vacuum or argon environments[J]. J Vac Sci Technol B, 2010, 28: C5C1-C5C7.
[35] Rutter G, Crain J, Guisinger N, et al. Scattering and interference in epitaxial graphene[J]. Science, 2007, 317: 219-222.
[36] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312: 1191-1196.
[37] Miller D L, Kubista K D, Rutter G M, et al. Observing the quantization of zero mass carriers in graphene[J]. Science, 2009, 324: 924-927.
[38] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324: 1530-1534.
[39] Orlita M, Faugeras C, Plochocka P, et al. Approaching the dirac point in high-mobility multilayer epitaxial graphene[J]. Phys Rev Lett, 2008, 101: 267601.
[40] Hass J, Varchon F, Millan-Otoya J-E, et al. Why multilayer graphene on 4H-SiC (000) behaves like a single sheet of graphene[J]. Phys Rev Lett, 2008, 100: 125504.
[41] Robinson J A, Wetherington M, Tedesco J L, et al. Correlating raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale[J]. Nano Lett, 2009, 9: 2873-2876.
[42] Camara N, Jouault B, Caboni A, et al. Growth of monolayer graphene on 8 off-axis 4H-SiC (000) substrates with application to quantum transport devices[J]. Appl Phys Lett, 2010, 97: 093107.
[43] Wu Z-S, Ren W, Gao L, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J]. ACS Nano, 2009, 3: 411-417.
[44] Li N, Wang Z, Zhao K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon, 2010, 48: 255-259.
[45] Wu Y, Wang B, Ma Y, et al. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films[J]. Nano Res, 2010, 3: 661-669.
[46] Huang L, Wu B, Chen J, et al. Gram-scale synthesis of graphene sheets by a catalytic arc-discharge method[J]. Small, 2013, 9: 1330-1335.
[47] He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide[J]. Chem Phys Lett, 1998, 287: 53-56.
[48] Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering[J]. J Phys Chem B, 2006, 110: 22328-22338.
[49] Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chem Mater, 2006, 18: 2740-2749.
[50] He H, Riedl T, Lerf A, et al. Solid-state nmr studies of the structure of graphite oxide[J]. J Phys Chem, 1996, 100: 19954-19958.
[51] Lerf A, He H, Riedl T, et al. 13 C and 1 H masnmr studies of graphite oxide and its chemically modified derivatives[J]. Solid State Ionics, 1997, 101: 857-862.
[52] Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited[J]. J Phys Chem B, 1998, 102: 4477-4482.
[53] Brodie B. Sur le poids atomique du graphite[J]. Ann Chim Phys, 1860, 59: 466-472.
[54] Staudenmaier L. Verfahren zur darstellung der graphitsäure[J]. Berichte der deutschen chemischen Gesellschaft, 1899, 32: 1394-1399.
[55] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80: 1339-1339.
[56] Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem Mater, 1999, 11: 771-778.
[57] Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide[J]. Carbon, 2004, 42: 2929-2937.
[58] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4: 4806-4814.
[59] Peng L, Xu Z, Liu Z, et al. An iron-based green approach to 1-H production of single-layer graphene oxide[J]. Nat Commun, 2015, 6: 5716.
[60] Peckett J W, Trens P, Gougeon R D, et al. Electrochemically oxidised graphite. : characterisation and some ion exchange properties[J]. Carbon, 2000, 38: 345-353.
[61] Peckett J. Electrochemically prepared colloidal, oxidised graphite[J]. J Mater Chem, 1997, 7: 301-305.
[62] Krishnan D, Kim F, Luo J, et al. Energetic graphene oxide: challenges and opportunities[J]. Nano Today, 2012, 7: 137-152.
[63] Shen J, Hu Y, Shi M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chem, Mater, 2009, 21: 3514-3520.
[64] Antisari M, Montone A, Jovic N, et al. Low energy pure shear milling: a method for the preparation of graphite nano-sheets[J]. Scripta Mater, 2006, 55: 1047-1050.
[65] Sun G, Li X, Qu Y, et al. Preparation and characterization of graphite nanosheets from detonation technique[J]. Mater Lett, 2008, 62: 703-706.
[66] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45: 1558-1565.
[67] Li D, Mueller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol, 2008, 3: 101-105.
[68] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nat Nanotechnol, 2009, 4: 25-29.
[69] Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. J Mater Chem, 2006, 16: 155-158.
[70] Si Y, Samulski E T. Synthesis of water soluble graphene[J]. Nano Lett, 2008, 8: 1679-1682.
[71] Pei S, Zhao J, Du J, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon, 2010, 48: 4466-4474.
[72] Fan X, Peng W, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation[J]. Adv Mater, 2008, 20: 4490-4493.
[73] Rourke J P, Pandey P A, Moore J J, et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets[J]. Angew Chem Int Edit, 2011, 50: 3173-3177.
[74] Boukhvalov D W, Katsnelson M I. Modeling of graphite oxide[J]. J Am Chem Soc, 2008, 130: 10697-10701.
[75] Zhou M, Wang Y, Zhai Y, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films[J]. Chem-Eur J, 2009, 15: 6116-6120.
[76] Zhang K, Fu Q, Pan N, et al. Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography[J]. Nat Commun, 2012, 3: 1194.
[77] Zhou Y, Bao Q, Tang L A L, et al. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chem Mater, 2009, 21: 2950-2956.
[78] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4: 4324-4330.
[79] Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. J Phys Chem B, 2006, 110: 8535-8539.
[80] McAllister M J, Li J-L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chem Mater, 2007, 19: 4396-4404.
[81] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Lett, 2008, 8: 323-327.
[82] Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites, UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2: 1487-1491.
[83] Chen H-Y, Han D, Tian Y, et al. Mask-free and programmable patterning of graphene by ultrafast laser direct writing[J]. Chem Phys, 2014, 430: 13-17.
[84] Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper[J]. J Mater Chem, 2011, 21: 3324-3334.
[85] Wei D, Liu Y, Cao L, et al. A new method to synthesize complicated multibranched carbon nanotubes with controlled architecture and composition[J]. Nano Lett, 2006, 6: 186-192.
[86] Robertson S. Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces[J]. Nature, 1969, 221: 1044-1046.
[87] Shelton J, Patil H, Blakely J. Equilibrium segregation of carbon to a nickel(111)surface: a surface phase transition[J]. Surf Sci, 1974, 43: 493-520.
[88] Jiao L, Fan B, Xian X, et al. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing[J]. J Am Chem Soc, 2008, 130: 12612-12613.
[89] Reina A, Son H, Jiao L, et al. Transferring and identification of single-and few-layer graphene on arbitrary substrates[J]. J Phys Chem C, 2008, 112: 17741-17744.
[90] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett, 2008, 9: 30-35.
[91] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312-1314.
[92] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457: 706-710.
[93] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol, 2010, 5: 574-578.
[94] Yan K, Fu L, Peng H, et al. Designed cvd growth of graphene via process engineering[J]. Acc Chem Res, 2013, 46: 2263-2274.
[95] Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Lett, 2009, 9: 4268-4272.
[96] Edwards R S, Coleman K S. Graphene film growth on polycrystalline metals[J]. Acc Chem Res, 2012, 46: 23-30.
[97] Luo Z, Lu Y, Singer D W, et al. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure[J]. Chem Mater, 2011, 23: 1441-1447.
[98] Gan L, Luo Z. Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper[J]. ACS Nano, 2013, 7: 9480-9488.
[99] Jung D H, Kang C, Kim M, et al. Effects of hydrogen partial pressure in the annealing process on graphene growth[J]. J Phys Chem C, 2014, 118: 3574-3580.
[100] Yu Q, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nat Mater, 2011, 10: 443-449.
[101] Wu B, Geng D, Guo Y, et al. Equiangular hexagon-shape-controlled synthesis of graphene on copper surface[J]. Adv Mater, 2011, 23: 3522-3525.
[102] Geng D, Wu B, Guo Y, et al. Fractal etching of graphene[J]. J Am Chem Soc, 2013, 135: 6431-6434.
[103] Geng D, Wang H, Wan Y, et al. Direct top-down fabrication of large-area graphene arrays by an in situ etching method[J]. Adv Mater, 2015, 27: 4195-4199.
[104] Zou Z, Fu L, Song X, et al. Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene[J]. Nano Lett, 2014, 14: 3832-3839.
[105] Liu X, Fu L, Liu N, et al. Segregation growth of graphene on Cu-Ni alloy for precise layer control[J]. J Phys Chem C, 2011, 115: 11976-11982.
[106] Dai B, Fu L, Zou Z, et al. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene[J]. Nat Commun, 2011, 2: 522.
[107] Geng D, Wu B, Guo Y, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface[J]. Proc Natl Acad Sci USA, 2012, 109: 7992-7996.
[108] Wang J, Zeng M, Tan L, et al. High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth[J]. Sci Rep, 2013, 3: 2670.
[109] Zeng M, Tan L, Wang J, et al. Liquid metal: an innovative solution to uniform graphene films[J]. Chem Mater, 2014, 26: 3637-3643.
[110] Zeng M, Tan L, Wang L, et al. Isotropic growth of graphene toward smoothing stitching[J]. ACS Nano, 2016, 10: 7189-7196.
[111] Zeng M, Wang L, Liu J, et al. Self-assembly of graphene single crystals with uniform size and orientation: the first 2D super-ordered structure[J]. J Am Chem Soc, 2016, 138: 7812-7815.
[112] Chen J, Wen Y, Guo Y, et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates[J]. J Am Chem Soc, 2011, 133: 17548-17551.
[113] Chen J, Guo Y, Wen Y, et al. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J]. Adv Mater, 2013, 25: 992-997.
[114] Chen J, Guo Y, Jiang L, et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates[J]. Adv Mater, 2014, 26: 1348-1353.
[115] Tang S, Wang H, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nat Commun, 2015, 6: 6499.
[116] Sun J, Gao T, Song X, et al. Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates[J]. J Am Chem Soc, 2014, 136: 6574-6577.
[117] Tan L, Zeng M, Wu Q, et al. Direct growth of ultrafast transparent single-layer graphene defoggers[J]. Small, 2015, 11: 1840-1846.
[118] Liu N, Fu L, Dai B, et al. Universal segregation growth approach to wafer-size graphene from non-noble metals[J]. Nano Lett., 2010, 11: 297-303.
[119] Zhang C, Fu L, Liu N, et al. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J]. Adv Mater, 2011, 23: 1020-1024.
[120] Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466: 470-473.
[121] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458: 877-880.
[122] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458: 872-876.
[123] Jiao L, Wang X, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons[J]. Nat Nanotechnol, 2010, 5: 321-325.
[124] Tao C, Jiao L, Yazyev O V, et al. Spatially resolving edge states of chiral graphene nanoribbons[J]. Nat Phys, 2011, 7: 616-620.
[125] Börrnert F, Avdoshenko S M, Bachmatiuk A, et al. Amorphous carbon under 80 kV electron irradiation: A means to make or break graphene[J]. Adv Mater, 2012, 24: 5630-5635.
[126] Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490: 192-200.
[127] Yang H, Heo J, Park S, et al. Graphene barristor, a triode device with a gate-controlled schottky barrier[J]. Science, 2012, 336: 1140-1143.
[128] Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474: 64-67.
[129] Meyer J C, Girit C O, Crommie M F, et al. Hydrocarbon lithography on graphene membra-nes[J]. Appl Phys Lett, 2008, 92: 123110.
[130] Tedesco J L, VanMil B L, Myers-Ward R L, et al. Hall effect mobility of epitaxial graphene grown on silicon carbide[J]. Appl Phys Lett, 2009, 95: 122102.
[131] Juang Z-Y, Wu C-Y, Lo C-W, et al. Synthesis of graphene on silicon carbide substrates at low temperature[J]. Carbon, 2009, 47: 2026-2031.
[132] Lee D S, Riedl C, Krauss B, et al. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2[J]. Nano Lett, 2008, 8: 4320-4325.
[133] Unarunotai S, Murata Y, Chialvo C E, et al. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors[J]. Appl Phys Lett, 2009, 95: 202101.
[134] Unarunotai S, Koepke J C, Tsai C-L, et al. Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer[J]. ACS Nano, 2010, 4: 5591-5598.
[135] Caldwell J D, Anderson T J, Culbertson J C, et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates[J]. ACS Nano, 2010, 4: 1108-1114.
[136] Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Lett, 2009, 9: 4359-4363.
[137] Lin Y-C, Jin C, Lee J-C, et al. Clean transfer of graphene for isolation and suspension[J]. ACS Nano, 2011, 5: 2362-2368.
[138] Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5: 6916-6924.
[139] Hallam T, Berner N C, Yim C, et al. Strain, bubbles, dirt, and folds: a study of graphene polymer-assisted transfer[J]. Adv Mater Inter, 2014, 1: 1400115.
[140] Suk J W, Lee W H Lee J, et al. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue[J]. Nano Lett, 2013, 13: 1462-1467.
[141] Lin Y C, Lu C C, Yeh C H, et al. Graphene annealing: how clean can it be[J]? Nano Lett, 2012, 12: 414-419.
[142] Her M, Beams R, Novotny L. Graphene transfer with reduced residue[J]. Phys Lett A, 2013, 377: 1455-1458.
[143] Liang X, Sperling B A, Calizo I, et al. Toward clean and crackless transfer of graphene[J]. ACS Nano, 2011, 5: 9144-9153.
[144] Wang Y, Zheng Y, Xu X, et al. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst[J]. ACS Nano, 2011, 5: 9927-9933.
[145] Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nat, Commun, 2012, 3: 699.
[146] Kang J, Hwang S, Kim J H, et al. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing[J]. ACS Nano, 2012, 6: 5360-5365.
[147] Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films[J]. Nano Lett, 2010, 10: 490-493.
[148] Kang S J, Kim B, Kim K S, et al. Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance ofets[J]. Adv Mater, 2011, 23: 3531-3535.
[149] Park H J, Meyer J, Roth S, et al. Growth and properties of few-layer graphene prepared by chemical vapor deposition[J]. Carbon, 2010, 48: 1088-1094.
[150] Kim M, An H, Lee W-J, et al. Low damage-transfer of graphene using epoxy bonding[J]. Electron Mater Lett, 2013, 9: 517-521.
[151] Jung W, Kim D, Lee M, et al. Ultraconformal contact transfer of monolayer graphene on metal to various substrates[J]. Adv Mater, 2014, 26: 6394-6400.
[152] Wang D Y, Huang I S, Ho P H, et al. Clean-lifting transfer of large-area residual-free graphene films[J]. Adv Mater, 2013, 25: 4521-4526.
[153] Yoon T, Shin W C, Kim T Y, et al. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process[J]. Nano Lett, 2012, 12: 1448-1452.
[154] Lock E H, Baraket M, Laskoski M, et al. High-quality uniform dry transfer of graphene to polymers[J]. Nano Lett, 2012, 12: 102-107.
[155] Martins L G, Song Y, Zeng T, et al. Direct transfer of graphene onto flexible substrates[J]. P Natl Acad Sci USA, 2013, 110: 17762-17767.
[156] Gao L, Ni G X, Liu Y, et al. Face-to-face transfer of wafer-scale graphene films[J]. Nature, 2014, 505: 190-194.
[157] Kang J, Shin D, Bae S, et al. Graphene transfer: key for applications[J]. Nanoscale, 2012, 4: 5527-5537.
[158] Lu W, Zeng M, Li X, et al. Controllable sliding transfer of wafer-size graphene[J]. Adv Sci 2016, 1600006.
[159] Gorantla S, Bachmatiuk A, Hwang J, et al. A universal transfer route for graphene[J]. Nanoscale, 2014, 6: 889-896.