任务二 统计分组

一、统计分组的概念

(一)统计分组的涵义

统计分组就是根据统计研究的目的和任务,按照一定的标志将总体划分为若干个性质不同部分的一种统计方法。统计分组的目的就是要使组内各单位之间的差异尽可能小,组与组之间的差异尽可能大,从而将大量无序的数据变为有序的、层次分明的、能够显示总体数量特征的数据资料。

统计分组要处理好“分”与“合”的关系,它就总体而言是“分”,是把一个总体划分为性质不同的各个部分;就个体而言是“合”,是把同质或相近的单位合并起来成为一个部分。统计分组的这种“分”与“合”的双重意义,对于认识总体特征和进行总体的结构性分析都是非常必要的,它是保证统计分析全面性的重要依据。

统计分组是分析认识问题的一种方法,具有普遍的方法论意义。也就是说,除统计之外的许多学科也大量应用分组法,而这些分组法都符合统计分组的基本原理,或者说就是统计分组在这些学科的应用,但是,只有统计学才专门研究分组法的原理和方法。

(二)统计分组的原则

统计分组是对总体各单位的分类,是整理统计资料的方法,也是统计分析的基础。因此,除了在内容各方面必须反映各单位、各组之间的性质差异外,还要在方法上保证资料的完整性和真实性,这是对统计分组的最基本的要求。为此,统计分组在方法上必须符合两个原则:

1.穷尽性原则

穷尽性原则也叫不遗漏原则,即统计分组必须保证总体的每一个单位都能归入其中的一个组,各个组的单位数之和等于总体单位总量,总体的指标必须是各个单位相应标志的综合。违背了这一原则,就会损害统计资料的完整性,从而也就损害了统计资料的真实性。

按照穷尽性原则分组,需要重点注意的是分组的范围,它必须包括总体各单位在分组标志上的全部表现。即按品质标志分组时,组数是品质标志的全部类型;按变量分组时,最大组的上限应大于最大标志值,最小组的下限应小于最小标志值。

2.互斥性原则

互斥性原则也叫不重复原则,即统计分组必须保证总体的每一个单位只能属于其中的一个组,不能出现重复统计的现象,否则,就必然会影响统计资料的真实性。

在具体的分组过程中,为了保证各组之间不重复,按品质标志分组要重点注意对各组范围、特征、性质的界定,对于性质上较为复杂的单位要做出明确、统一的处理规定。在按变量分组时,重点要注意相邻组之间重叠组限上的单位归属问题。统计的一般处理方法是:重叠组限上的单位归入下限组,或者叫“上限不在内”原则(具体实例见本章任务三)。同时还要注意,这种处理方法仅就一般问题而言,对于某些特殊问题,则需要做特殊处理。另外,统计上的这种一般处理与税法等其他学科的一般性处理也有所不同。

二、统计分组的作用

统计在认识社会经济现象的特征时,必须把总体数量特征与总体的结构、比例关系结合起来,才能全面、完整地揭示总体的数量特征,要实现这个目的,就需要进行统计分组。统计分组的作用有以下三个方面:

(一)划分社会经济现象的类型

运用统计分组可以将复杂的社会经济现象划分成若干性质不同的类型,从这些不同类型的社会经济现象中,可以反映出不同的特征,以揭示其本质和规律性。这种分组也称为类型分组。例如我国的工业企业可划分为国有企业、集体企业、股份制企业、私营企业、外资企业等经济类型。

(二)揭示社会经济现象的内部结构

对于社会经济现象总体,按一定的标志进行分组,就可以研究总体的内部结构,而各部分所占比重的变化,则可反映总体的性质、特点和发展变化规律。这种分组称为结构分组。例如,某省“十二五”期间国内生产总值构成变化情况如表3-1所示。

表3-1 2011—2015年某省国内生产总值构成变化情况(%)

从上表可以看出该省国民经济内部三次产业的构成及其变化情况,反映近几年我国产业结构的调整过程。

(三)揭示现象之间的依存关系

社会经济现象不是孤立的,现象之间广泛存在着相互联系、相互依存、相互制约的依存关系,如自动化程度与劳动生产率之间、商品价格与市场供给量之间、商品销售额与流通费用率之间等,都在一定程度上存在相互依存的关系。如施肥量与平均亩产之间的关系见表3-2所示。

表3-2 某农作物施肥量与平均亩产的关系

从上表可以看出,施肥多则亩产高,当然,到一定的极限后也会减少,由此可见它们之间的依存关系。

三、统计分组标志的选择

统计分组的关键是正确选择分组标志和划分各组的界限。分组标志的选择是否恰当将直接关系统计分组是否正确,关系能否实现统计研究的目的和任务。任何社会经济现象都有很多标志,要从许多标志中选择反映总体性质特征的标志,必须遵循以下的原则:

(一)根据研究的目的和任务选择分组标志

总体单位有许多标志,究竟选择什么标志作为分组标志,需要根据统计研究的目的和任务来决定。例如,在对某高等职业学院在校学生这一总体的研究中,每一个在校学生都是总体单位,学生有年龄、民族、性别、身高、学习成绩等许许多多的标志。如果要了解学生的学习情况,只能选择学习成绩作为分组标志,而不能选择其他的标志。

(二)选择能反映现象本质的标志作为分组标志

在统计总体中,各单位具有许许多多的标志,有些是主要的能反映事物本质特征的标志,有些则是次要的标志,例如,要研究企业经济效益的好坏,可供选择的标志很多,诸如工业产值、利税额、劳动生产率、资金利用率、人均利税额等,但更能综合反映企业经济效益好坏的标志则是人均利税额等。

(三)根据现象所处的历史条件和经济条件选择分组标志

社会经济现象是不断发展变化的,条件变化了,事物的特征就会发生变化,与此对应的最能反映本质特征的标志也将随之变化。例如,研究企业规模,在以手工操作为主的条件下,可选择职工人数作为分组标志,而在现代化大生产条件下,则需要选择以设备为基础的工业产品生产能力或固定资产原值等标志来进行分组。

四、统计分组的种类

根据统计研究的目的和任务,以及统计对象的特点不同,统计分组的方法有以下几个基本类型:

(一)按使用的分组标志的特征不同,分为品质标志分组和数量标志分组

(1)按品质标志分组,即是按照事物属性的特征来分组,有比较简单的,如人口总体按“性别”分为男、女两组(2007年我国人口数及其构成如表3-3所示),民族按56个民族来分组,这些组在性质上的差异比较明确和稳定;也有复杂的,如工业企业按产品形态和行业分组,人口按行业和职工分组,这些组的界限不易进行明确的划分。

表3-3 2010年我国人口数及其构成

(2)按数量标志分组,即是按照反映事物差异的数量标志为分组的依据。例如,人口总体按“年龄”分组;工业企业总体按“产品产量”分组;居民按“收入水平”分组等。按数量标志分组并非单纯确定各组的数量界限,而应通过数量差异区分各组的不同类型和性质,任何经济现象的质和量都是不可分割的,质规定着量,一定的量表现着一定的质。某班学生统计学基础期末考试情况分组见表3-4。

表3-4 某班学生统计学基础期末考试情况

(二)按照采用分组标志的多少不同,分为简单分组和复合分组

1.简单分组

简单分组是对研究总体按一个标志进行的分组。例如,将一个学校的学生按性别分组或按成绩分组就是简单分组,如表3-3同表3-4。简单分组操作容易,在现象总体结构简单的条件下,一般采用简单分组。

有时只凭一个标志进行一次分组是不够的,必须从不同的角度运用多个分组标志进行多方面的分组才能达到统计分组的目的,此时,有必要对总体同时选择两个或两个以上的标志进行多次简单分组,这种多次简单分组称为平行分组或平行分组体系。例如,为了了解运动员的自然构成,可以按照性别、年龄、身高、体重等标志进行多次分组。

(1)按性别分组:男、女。

(2)按身高分组(厘米):150以下、150~160、160~170、170~180、180以上。

(3)按年龄分组(岁):8以下、8~12、12~14、14~16、16~18、18~25、25以上。

(4)按体重分组(千克):40以下、40~50、50~60、60~70、70~80、80以上。

平行分组的特点是每次分组只能固定一个因素对差异的影响,而不能固定其他因素对差异的影响。

2.复合分组

复合分组是对被研究对象两个或两个以上的标志进行的重叠分组。例如,工业企业先按企业的规模大小分组,再按所有制形式分组,结果形成了双层重叠的组别,如表3-5所示。

表3-5 工业企业按规模和所有制形式进行复合分组

这种划分的结果就是形成了几层重叠的组别,这样可以全面、深入、系统地分析和认识问题。需要注意的是不宜使用过多标志进行过细的分组。